Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 51069 by rahul 19 last updated on 23/Dec/18

If sinA+cos2A =(1/2) and  cosA+sin2A=(1/3) , then find the value  of sin3A.

$${If}\:\mathrm{sin}{A}+\mathrm{cos2}{A}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{and} \\ $$$$\mathrm{cos}{A}+\mathrm{sin2}{A}=\frac{\mathrm{1}}{\mathrm{3}}\:,\:{then}\:{find}\:{the}\:{value} \\ $$$${of}\:\mathrm{sin3}{A}. \\ $$

Answered by peter frank last updated on 23/Dec/18

cos 2A=(1/2)−sin A.....(i)  sin 2A=(1/3)−cos A.....(ii)  square (i) and (ii) and add  1=(1/4)+(1/9)−sin A−(2/3)cos A+1  sin A−(2/3)cos A=−((13)/(36))  3sin A−2cos A=−((13)/9)  (3sin A−2cos A)^3 =(−((13)/9))^3   39sin^3 A−50sin^2 Acos A+12sin A−8cos A=−((2197)/(729)).....(iii)  sin 2A=(1/3)−cos A.....(ii)  cosA=(1/(3+6sinA)).....(iv)    please wait....

$$\mathrm{cos}\:\mathrm{2}{A}=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:{A}.....\left({i}\right) \\ $$$$\mathrm{sin}\:\mathrm{2}{A}=\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{cos}\:{A}.....\left({ii}\right) \\ $$$${square}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{and}\:{add} \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{9}}−\mathrm{sin}\:{A}−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{cos}\:{A}+\mathrm{1} \\ $$$$\mathrm{sin}\:{A}−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{cos}\:{A}=−\frac{\mathrm{13}}{\mathrm{36}} \\ $$$$\mathrm{3sin}\:{A}−\mathrm{2cos}\:{A}=−\frac{\mathrm{13}}{\mathrm{9}} \\ $$$$\left(\mathrm{3sin}\:{A}−\mathrm{2cos}\:{A}\right)^{\mathrm{3}} =\left(−\frac{\mathrm{13}}{\mathrm{9}}\right)^{\mathrm{3}} \\ $$$$\mathrm{39sin}\:^{\mathrm{3}} {A}−\mathrm{50sin}\:^{\mathrm{2}} {A}\mathrm{cos}\:{A}+\mathrm{12sin}\:{A}−\mathrm{8cos}\:{A}=−\frac{\mathrm{2197}}{\mathrm{729}}.....\left({iii}\right) \\ $$$$\mathrm{sin}\:\mathrm{2}{A}=\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{cos}\:{A}.....\left({ii}\right) \\ $$$${cosA}=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{6}{sinA}}.....\left({iv}\right) \\ $$$$ \\ $$$${please}\:{wait}.... \\ $$

Answered by MJS last updated on 23/Dec/18

sin A +cos 2A =(1/2) ⇔ sin^2  A −(1/2)sin A −(1/4)=0 ⇒  ⇒ sin A =(1/4)±((√5)/4)     (1)  cos A +sin 2A =(1/3) ⇔ 2sin A cos A +cos A −(1/3)=0 ⇒  ⇒ cos A =(1/(3(1+2sin A)))     (2)  (1) in (2)  cos A =(1/2)±((√5)/6)  but (sin A =(1/4)±((√5)/4))∧(cos A =(√(1−sin^2  A))) ⇒  ⇒ cos A =(1/4)(√(10∓2(√5))) ≠  (1/2)±((√5)/6) ⇒  ⇒ no solution for A

$$\mathrm{sin}\:{A}\:+\mathrm{cos}\:\mathrm{2}{A}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Leftrightarrow\:\mathrm{sin}^{\mathrm{2}} \:{A}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{A}\:−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{sin}\:{A}\:=\frac{\mathrm{1}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{cos}\:{A}\:+\mathrm{sin}\:\mathrm{2}{A}\:=\frac{\mathrm{1}}{\mathrm{3}}\:\Leftrightarrow\:\mathrm{2sin}\:{A}\:\mathrm{cos}\:{A}\:+\mathrm{cos}\:{A}\:−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{cos}\:{A}\:=\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+\mathrm{2sin}\:{A}\right)}\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{in}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{cos}\:{A}\:=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{6}} \\ $$$$\mathrm{but}\:\left(\mathrm{sin}\:{A}\:=\frac{\mathrm{1}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}\right)\wedge\left(\mathrm{cos}\:{A}\:=\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{A}}\right)\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{cos}\:{A}\:=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{10}\mp\mathrm{2}\sqrt{\mathrm{5}}}\:\neq\:\:\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{6}}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{A} \\ $$

Commented by rahul 19 last updated on 24/Dec/18

Thank you sir!  But what went wrong in Tanmay Sir′s  solution ?

$${Thank}\:{you}\:{sir}! \\ $$$${But}\:{what}\:{went}\:{wrong}\:{in}\:{Tanmay}\:{Sir}'{s} \\ $$$${solution}\:? \\ $$

Commented by mr W last updated on 24/Dec/18

MJS sir is right. the value for  sin A+cos 2A and the value for  cos A+sin 2A can not be chosen  independently from each other.  if  sin A+cos 2A=(1/2), then  cos A+sin 2A can only be ±((√(5+2(√5)))/2)  or ±((√(5−2(√5)))/2), but never (1/3).

$${MJS}\:{sir}\:{is}\:{right}.\:{the}\:{value}\:{for} \\ $$$$\mathrm{sin}\:{A}+\mathrm{cos}\:\mathrm{2}{A}\:{and}\:{the}\:{value}\:{for} \\ $$$$\mathrm{cos}\:{A}+\mathrm{sin}\:\mathrm{2}{A}\:{can}\:{not}\:{be}\:{chosen} \\ $$$${independently}\:{from}\:{each}\:{other}.\:\:{if} \\ $$$$\mathrm{sin}\:{A}+\mathrm{cos}\:\mathrm{2}{A}=\frac{\mathrm{1}}{\mathrm{2}},\:{then} \\ $$$$\mathrm{cos}\:{A}+\mathrm{sin}\:\mathrm{2}{A}\:{can}\:{only}\:{be}\:\pm\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$${or}\:\pm\frac{\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}},\:{but}\:{never}\:\frac{\mathrm{1}}{\mathrm{3}}. \\ $$

Commented by MJS last updated on 24/Dec/18

you can “solve” in many ways  sin^2  A −(1/2)sin A −(1/4)=0  2sin A cos A +cos A −(1/3)=0  write s for sin A and c for cos A  s^2 −(1/2)s−(1/4)=0 (1)  2sc+c−(1/3)=0 (2)  we can solve this system for s and c. but s and  c aren′t independent. we have a third equation  s^2 +c^2 =1 (3)  ⇒ no solution

$$\mathrm{you}\:\mathrm{can}\:``\mathrm{solve}''\:\mathrm{in}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{A}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{A}\:−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{2sin}\:{A}\:\mathrm{cos}\:{A}\:+\mathrm{cos}\:{A}\:−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{write}\:{s}\:\mathrm{for}\:\mathrm{sin}\:{A}\:\mathrm{and}\:{c}\:\mathrm{for}\:\mathrm{cos}\:{A} \\ $$$${s}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{s}−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{2}{sc}+{c}−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{system}\:\mathrm{for}\:{s}\:\mathrm{and}\:{c}.\:\mathrm{but}\:{s}\:\mathrm{and} \\ $$$${c}\:\mathrm{aren}'\mathrm{t}\:\mathrm{independent}.\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{third}\:\mathrm{equation} \\ $$$${s}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{1}\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$

Commented by rahul 19 last updated on 24/Dec/18

Thank you both sirs!  Understood now.

$${Thank}\:{you}\:{both}\:{sirs}! \\ $$$${Understood}\:{now}. \\ $$

Answered by mr W last updated on 24/Dec/18

the question should have been:  if sinA+cos2A =a and  cosA+sin2A=b, then find the value  of sin 3A.    solution:  sinA+cos2A =a  sin^2 A+2 sin A cos 2A+cos^2  2A =a^2     cosA+sin2A=b  cos^2 A+2 cos A sin 2A+sin^2  2A=b^2     ⇒1+2(sin A cos 2A+cos A sin 2A)+1=a^2 +b^2   ⇒1+2 sin 3A+1=a^2 +b^2   ⇒sin 3A=((a^2 +b^2 )/2)−1    note: a and b can not be any values!  they must match to each other. e.g.  a=(1/2) and b=(1/3) don′t match. if a=(1/2),  then b can only be ±((√(5+2(√5)))/2) or ±((√(5−2(√5)))/2).  example:  a=(1/2), b=((√(5+2(√5)))/2)  ⇒sin 3A=(1/2)((1/4)+((5+2(√5))/4))−1=(((√5)−1)/4)

$${the}\:{question}\:{should}\:{have}\:{been}: \\ $$$${if}\:\mathrm{sin}{A}+\mathrm{cos2}{A}\:={a}\:{and} \\ $$$$\mathrm{cos}{A}+\mathrm{sin2}{A}={b},\:{then}\:{find}\:{the}\:{value} \\ $$$${of}\:\mathrm{sin}\:\mathrm{3}{A}. \\ $$$$ \\ $$$${solution}: \\ $$$$\mathrm{sin}{A}+\mathrm{cos2}{A}\:={a} \\ $$$$\mathrm{sin}^{\mathrm{2}} {A}+\mathrm{2}\:\mathrm{sin}\:{A}\:\mathrm{cos}\:\mathrm{2}{A}+\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}{A}\:={a}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{cos}{A}+\mathrm{sin2}{A}={b} \\ $$$$\mathrm{cos}^{\mathrm{2}} {A}+\mathrm{2}\:\mathrm{cos}\:{A}\:\mathrm{sin}\:\mathrm{2}{A}+\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{A}={b}^{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow\mathrm{1}+\mathrm{2}\left(\mathrm{sin}\:{A}\:\mathrm{cos}\:\mathrm{2}{A}+\mathrm{cos}\:{A}\:\mathrm{sin}\:\mathrm{2}{A}\right)+\mathrm{1}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{1}+\mathrm{2}\:\mathrm{sin}\:\mathrm{3}{A}+\mathrm{1}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{3}{A}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{1} \\ $$$$ \\ $$$${note}:\:{a}\:{and}\:{b}\:{can}\:{not}\:{be}\:{any}\:{values}! \\ $$$${they}\:{must}\:{match}\:{to}\:{each}\:{other}.\:{e}.{g}. \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{b}=\frac{\mathrm{1}}{\mathrm{3}}\:{don}'{t}\:{match}.\:{if}\:{a}=\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$${then}\:{b}\:{can}\:{only}\:{be}\:\pm\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}\:{or}\:\pm\frac{\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}. \\ $$$${example}: \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}},\:{b}=\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{3}{A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}\right)−\mathrm{1}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$

Commented by rahul 19 last updated on 24/Dec/18

Thank you Sir!

$${Thank}\:{you}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com