Question Number 75421 by peter frank last updated on 10/Dec/19 | ||
![]() | ||
$${If}\:{p}\:{is}\:{a}\:{point}\:{in}\:{the}\:{base} \\ $$$${AB}\:{of}\:\:{a}\:\:{triangle}\:\:{ABC} \\ $$$${such}\:{that}\:{AP}\:\::{PB}={P}:{Q} \\ $$$${prove}\:{that} \\ $$$$\left({p}+{q}\right)\mathrm{cot}\:\theta={q}\mathrm{cot}\:{A}−{p}\mathrm{cot}\:{B} \\ $$ | ||
Commented by som(math1967) last updated on 11/Dec/19 | ||
![]() | ||
$${Which}\:{one}\:{is}\:\theta?\:{p}={P}\:,{q}={Q}\:? \\ $$ | ||
Commented by peter frank last updated on 11/Dec/19 | ||
![]() | ||
$${p}={P} \\ $$ | ||
Commented by som(math1967) last updated on 11/Dec/19 | ||
![]() | ||
$${Which}\:{angle}\:{is}\:\theta \\ $$ | ||