Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 63860 by gunawan last updated on 10/Jul/19

If n is even positive integer, then the  condition that the greatest term in the  expansion of (1+x)^n  may have the  greatest coefficient also is

$$\mathrm{If}\:{n}\:\mathrm{is}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{condition}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{term}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{{n}} \:\mathrm{may}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{also}\:\mathrm{is} \\ $$

Answered by mr W last updated on 10/Jul/19

T_r =C_r ^n x^r   n=2m  T_(m−1) =C_(m−1) ^(2m) x^(m−1)   T_m =C_m ^(2m) x^m  should be maximum.  T_(m+1) =C_(m+1) ^(2m) x^(m+1)   (T_m /T_(m−1) )=(C_m ^(2m) /C_(m−1) ^(2m) )x>1  (((2m)!(2m−m+1)!(m−1)!)/((2m−m)!m!(2m)!))x>1  (((m+1))/m)x>1  (((n+2)x)/n)>1  ⇒x>(n/(n+2))=1−(2/(n+2))  (T_m /T_(m+1) )=(C_m ^(2m) /(xC_(m+1) ^(2m) ))>1  ((n+2)/(nx))>1  (1/x)>(n/(n+2))  ⇒x<((n+2)/n)=1+(2/n)    ⇒condition is  1−(2/(n+2))<x<1+(2/n)

$${T}_{{r}} ={C}_{{r}} ^{{n}} {x}^{{r}} \\ $$$${n}=\mathrm{2}{m} \\ $$$${T}_{{m}−\mathrm{1}} ={C}_{{m}−\mathrm{1}} ^{\mathrm{2}{m}} {x}^{{m}−\mathrm{1}} \\ $$$${T}_{{m}} ={C}_{{m}} ^{\mathrm{2}{m}} {x}^{{m}} \:{should}\:{be}\:{maximum}. \\ $$$${T}_{{m}+\mathrm{1}} ={C}_{{m}+\mathrm{1}} ^{\mathrm{2}{m}} {x}^{{m}+\mathrm{1}} \\ $$$$\frac{{T}_{{m}} }{{T}_{{m}−\mathrm{1}} }=\frac{{C}_{{m}} ^{\mathrm{2}{m}} }{{C}_{{m}−\mathrm{1}} ^{\mathrm{2}{m}} }{x}>\mathrm{1} \\ $$$$\frac{\left(\mathrm{2}{m}\right)!\left(\mathrm{2}{m}−{m}+\mathrm{1}\right)!\left({m}−\mathrm{1}\right)!}{\left(\mathrm{2}{m}−{m}\right)!{m}!\left(\mathrm{2}{m}\right)!}{x}>\mathrm{1} \\ $$$$\frac{\left({m}+\mathrm{1}\right)}{{m}}{x}>\mathrm{1} \\ $$$$\frac{\left({n}+\mathrm{2}\right){x}}{{n}}>\mathrm{1} \\ $$$$\Rightarrow{x}>\frac{{n}}{{n}+\mathrm{2}}=\mathrm{1}−\frac{\mathrm{2}}{{n}+\mathrm{2}} \\ $$$$\frac{{T}_{{m}} }{{T}_{{m}+\mathrm{1}} }=\frac{{C}_{{m}} ^{\mathrm{2}{m}} }{{xC}_{{m}+\mathrm{1}} ^{\mathrm{2}{m}} }>\mathrm{1} \\ $$$$\frac{{n}+\mathrm{2}}{{nx}}>\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{x}}>\frac{{n}}{{n}+\mathrm{2}} \\ $$$$\Rightarrow{x}<\frac{{n}+\mathrm{2}}{{n}}=\mathrm{1}+\frac{\mathrm{2}}{{n}} \\ $$$$ \\ $$$$\Rightarrow{condition}\:{is} \\ $$$$\mathrm{1}−\frac{\mathrm{2}}{{n}+\mathrm{2}}<{x}<\mathrm{1}+\frac{\mathrm{2}}{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com