Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 64265 by Chi Mes Try last updated on 16/Jul/19

If ∫_(log 2) ^x   (1/(√(e^x −1))) dx = (π/6), then x =

$$\mathrm{If}\:\underset{\mathrm{log}\:\mathrm{2}} {\overset{{x}} {\int}}\:\:\frac{\mathrm{1}}{\sqrt{{e}^{{x}} −\mathrm{1}}}\:{dx}\:=\:\frac{\pi}{\mathrm{6}},\:\mathrm{then}\:{x}\:= \\ $$

Commented by mathmax by abdo last updated on 17/Jul/19

let I =∫_(ln2) ^x   (dx/(√(e^x −1)))  changement (√(e^x −1))=t give e^x −1=t^2  ⇒  e^x  =1+t^2  ⇒x=ln(1+t^2 )  ⇒I = ∫_1 ^(√(e^x −1))   ((2t)/((1+t^2 )t)) dt  =2 ∫_1 ^(√(e^x −1))  (dt/(1+t^2 )) =2[arctan(t)]_1 ^(√(e^x −1))  =2{arctan(√(e^x −1))−(π/4)}  I=(π/6) ⇒2 arctan(√(e^x −1))−(π/2) =(π/6) ⇒2arctan(√(e^x −1))=(π/2) +(π/6) =((2π)/3)  ⇒(√(e^x −1))=(π/3) ⇒e^x −1 =(π^2 /9) ⇒e^x  =1+(π^2 /9) ⇒x =ln(1+(π^2 /9)) .

$${let}\:{I}\:=\int_{{ln}\mathrm{2}} ^{{x}} \:\:\frac{{dx}}{\sqrt{{e}^{{x}} −\mathrm{1}}}\:\:{changement}\:\sqrt{{e}^{{x}} −\mathrm{1}}={t}\:{give}\:{e}^{{x}} −\mathrm{1}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${e}^{{x}} \:=\mathrm{1}+{t}^{\mathrm{2}} \:\Rightarrow{x}={ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:\:\Rightarrow{I}\:=\:\int_{\mathrm{1}} ^{\sqrt{{e}^{{x}} −\mathrm{1}}} \:\:\frac{\mathrm{2}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){t}}\:{dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{e}^{{x}} −\mathrm{1}}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\left[{arctan}\left({t}\right)\right]_{\mathrm{1}} ^{\sqrt{{e}^{{x}} −\mathrm{1}}} \:=\mathrm{2}\left\{{arctan}\sqrt{{e}^{{x}} −\mathrm{1}}−\frac{\pi}{\mathrm{4}}\right\} \\ $$$${I}=\frac{\pi}{\mathrm{6}}\:\Rightarrow\mathrm{2}\:{arctan}\sqrt{{e}^{{x}} −\mathrm{1}}−\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{6}}\:\Rightarrow\mathrm{2}{arctan}\sqrt{{e}^{{x}} −\mathrm{1}}=\frac{\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{6}}\:=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\sqrt{{e}^{{x}} −\mathrm{1}}=\frac{\pi}{\mathrm{3}}\:\Rightarrow{e}^{{x}} −\mathrm{1}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{9}}\:\Rightarrow{e}^{{x}} \:=\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{9}}\:\Rightarrow{x}\:={ln}\left(\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{9}}\right)\:. \\ $$

Commented by mathmax by abdo last updated on 17/Jul/19

error at final line arctan(√(e^x −1))=(π/3) ⇒(√(e^x −1))=tan((π/3))=(√(3 )) ⇒  e^x −1 =3 ⇒e^x  =4 ⇒x =ln(4)=2ln(2).

$${error}\:{at}\:{final}\:{line}\:{arctan}\sqrt{{e}^{{x}} −\mathrm{1}}=\frac{\pi}{\mathrm{3}}\:\Rightarrow\sqrt{{e}^{{x}} −\mathrm{1}}={tan}\left(\frac{\pi}{\mathrm{3}}\right)=\sqrt{\mathrm{3}\:}\:\Rightarrow \\ $$$${e}^{{x}} −\mathrm{1}\:=\mathrm{3}\:\Rightarrow{e}^{{x}} \:=\mathrm{4}\:\Rightarrow{x}\:={ln}\left(\mathrm{4}\right)=\mathrm{2}{ln}\left(\mathrm{2}\right). \\ $$

Answered by Tanmay chaudhury last updated on 16/Jul/19

∫(dx/(√(e^x −1)))      t^2 =e^x −1  2t×(dt/dx)=e^x   ((2t)/(1+t^2 ))dt=dx  ∫((2t)/(1+t^2 ))×(1/t)dt  2tan^(−1) (t)+c  2tan^(−1) ((√(e^x −1)) )+c  ∫_0 ^x (dx/(√(e^x −1)))  =2∣tan^(−1) (√(e^x −1)) ∣_(ln2) ^x   =2[(tan^(−1) (√(e^x −1)) )−tan^(−1) ((√(e^(ln2) −1)) )]  =2[tan^(−1) (√(e^x −1)) −(π/4)]  so   tan^(−1) (√(e^x −1)) =(π/(12))+(π/4)  (√(e^x −1)) =tan((π/3))  e^x −1=3  e^x =4  x=ln4     Tanmay  16.07.19

$$\int\frac{{dx}}{\sqrt{{e}^{{x}} −\mathrm{1}}}\:\:\:\:\:\:{t}^{\mathrm{2}} ={e}^{{x}} −\mathrm{1}\:\:\mathrm{2}{t}×\frac{{dt}}{{dx}}={e}^{{x}} \\ $$$$\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}={dx} \\ $$$$\int\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{1}}{{t}}{dt} \\ $$$$\mathrm{2}{tan}^{−\mathrm{1}} \left({t}\right)+{c} \\ $$$$\mathrm{2}{tan}^{−\mathrm{1}} \left(\sqrt{{e}^{{x}} −\mathrm{1}}\:\right)+{c} \\ $$$$\int_{\mathrm{0}} ^{{x}} \frac{{dx}}{\sqrt{{e}^{{x}} −\mathrm{1}}} \\ $$$$=\mathrm{2}\mid{tan}^{−\mathrm{1}} \sqrt{{e}^{{x}} −\mathrm{1}}\:\mid_{{ln}\mathrm{2}} ^{{x}} \\ $$$$=\mathrm{2}\left[\left({tan}^{−\mathrm{1}} \sqrt{{e}^{{x}} −\mathrm{1}}\:\right)−{tan}^{−\mathrm{1}} \left(\sqrt{{e}^{{ln}\mathrm{2}} −\mathrm{1}}\:\right)\right] \\ $$$$=\mathrm{2}\left[{tan}^{−\mathrm{1}} \sqrt{{e}^{{x}} −\mathrm{1}}\:−\frac{\pi}{\mathrm{4}}\right] \\ $$$${so}\:\:\:{tan}^{−\mathrm{1}} \sqrt{{e}^{{x}} −\mathrm{1}}\:=\frac{\pi}{\mathrm{12}}+\frac{\pi}{\mathrm{4}} \\ $$$$\sqrt{{e}^{{x}} −\mathrm{1}}\:={tan}\left(\frac{\pi}{\mathrm{3}}\right) \\ $$$${e}^{{x}} −\mathrm{1}=\mathrm{3} \\ $$$${e}^{{x}} =\mathrm{4} \\ $$$${x}={ln}\mathrm{4}\:\:\:\:\:{Tanmay}\:\:\mathrm{16}.\mathrm{07}.\mathrm{19} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com