Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115664 by bemath last updated on 27/Sep/20

If lim_(x→p)  ((p^x −x^p )/(x^x −p^p )) = 1 then p = ?

$${If}\:\underset{{x}\rightarrow{p}} {\mathrm{lim}}\:\frac{{p}^{{x}} −{x}^{{p}} }{{x}^{{x}} −{p}^{{p}} }\:=\:\mathrm{1}\:{then}\:{p}\:=\:? \\ $$

Answered by Olaf last updated on 27/Sep/20

x = p+u  lim_(x→p) ((e^(xlnp) −e^(plnx) )/(e^(xlnx) −e^(plnp) ))  lim_(x→p) ((e^((xlnp+plnx)/2) (e^((xlnp−plnx)/2) −e^(−((xlnp−plnx)/2)) ))/(e^((xlnx+plnp)/2) (e^((xlnx−plnp)/2) −e^(−((xlnx−plnp)/2)) )))  lim_(x→p)  e^((xln(p/x)+pln(x/p))/2) [((sinh(((xlnp−plnx)/2)))/(sinh(((xlnx−plnp)/2))))]  lim_(x→p)  1×[((sinh(((xlnp−plnx)/2)))/(sinh(((xlnx−plnp)/2))))]  lim_(x→p)  [(((((lnp−(p/x))/2))cosh(((xlnp−plnx)/2)))/((((lnx+1)/2))cosh(((xlnx−plnp)/2))))]  = ((lnp−1)/(lnp+1)) = ((ln((p/e)))/(ln(ep)))   ((ln((p/e)))/(ln(ep))) = 1 ⇒ (p/e) = ep ?  I′m surely wrong.

$${x}\:=\:{p}+{u} \\ $$$$\underset{{x}\rightarrow{p}} {\mathrm{lim}}\frac{{e}^{{x}\mathrm{ln}{p}} −{e}^{{p}\mathrm{ln}{x}} }{{e}^{{x}\mathrm{ln}{x}} −{e}^{{p}\mathrm{ln}{p}} } \\ $$$$\underset{{x}\rightarrow{p}} {\mathrm{lim}}\frac{{e}^{\frac{{x}\mathrm{ln}{p}+{p}\mathrm{ln}{x}}{\mathrm{2}}} \left({e}^{\frac{{x}\mathrm{ln}{p}−{p}\mathrm{ln}{x}}{\mathrm{2}}} −{e}^{−\frac{{x}\mathrm{ln}{p}−{p}\mathrm{ln}{x}}{\mathrm{2}}} \right)}{{e}^{\frac{{x}\mathrm{ln}{x}+{p}\mathrm{ln}{p}}{\mathrm{2}}} \left({e}^{\frac{{x}\mathrm{ln}{x}−{p}\mathrm{ln}{p}}{\mathrm{2}}} −{e}^{−\frac{{x}\mathrm{ln}{x}−{p}\mathrm{ln}{p}}{\mathrm{2}}} \right)} \\ $$$$\underset{{x}\rightarrow{p}} {\mathrm{lim}}\:{e}^{\frac{{x}\mathrm{ln}\frac{{p}}{{x}}+{p}\mathrm{ln}\frac{{x}}{{p}}}{\mathrm{2}}} \left[\frac{\mathrm{sinh}\left(\frac{{x}\mathrm{ln}{p}−{p}\mathrm{ln}{x}}{\mathrm{2}}\right)}{\mathrm{sinh}\left(\frac{{x}\mathrm{ln}{x}−{p}\mathrm{ln}{p}}{\mathrm{2}}\right)}\right] \\ $$$$\underset{{x}\rightarrow{p}} {\mathrm{lim}}\:\mathrm{1}×\left[\frac{\mathrm{sinh}\left(\frac{{x}\mathrm{ln}{p}−{p}\mathrm{ln}{x}}{\mathrm{2}}\right)}{\mathrm{sinh}\left(\frac{{x}\mathrm{ln}{x}−{p}\mathrm{ln}{p}}{\mathrm{2}}\right)}\right] \\ $$$$\underset{{x}\rightarrow{p}} {\mathrm{lim}}\:\left[\frac{\left(\frac{\mathrm{ln}{p}−\frac{{p}}{{x}}}{\mathrm{2}}\right)\mathrm{cosh}\left(\frac{{x}\mathrm{ln}{p}−{p}\mathrm{ln}{x}}{\mathrm{2}}\right)}{\left(\frac{\mathrm{ln}{x}+\mathrm{1}}{\mathrm{2}}\right)\mathrm{cosh}\left(\frac{{x}\mathrm{ln}{x}−{p}\mathrm{ln}{p}}{\mathrm{2}}\right)}\right] \\ $$$$=\:\frac{\mathrm{ln}{p}−\mathrm{1}}{\mathrm{ln}{p}+\mathrm{1}}\:=\:\frac{\mathrm{ln}\left(\frac{{p}}{{e}}\right)}{\mathrm{ln}\left({ep}\right)} \\ $$$$\:\frac{\mathrm{ln}\left(\frac{{p}}{{e}}\right)}{\mathrm{ln}\left({ep}\right)}\:=\:\mathrm{1}\:\Rightarrow\:\frac{{p}}{{e}}\:=\:{ep}\:? \\ $$$$\boldsymbol{\mathrm{I}}'\boldsymbol{\mathrm{m}}\:\boldsymbol{\mathrm{surely}}\:\boldsymbol{\mathrm{wrong}}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 27/Sep/20

lim_(x→p) ((p^x −x^p )/(x^x −p^p ))=((p^x logp−px^(p−1) )/(x^x (1+logx)))=((p^p (logp−1))/(p^p (logp+1)))=1  ((logp−1)/(logp+1))=1  Oh i think it is independent of P!

$$\underset{{x}\rightarrow\mathrm{p}} {\mathrm{lim}}\frac{\mathrm{p}^{\mathrm{x}} −\mathrm{x}^{\mathrm{p}} }{\mathrm{x}^{\mathrm{x}} −\mathrm{p}^{\mathrm{p}} }=\frac{\mathrm{p}^{\mathrm{x}} \mathrm{logp}−\mathrm{px}^{\mathrm{p}−\mathrm{1}} }{\mathrm{x}^{\mathrm{x}} \left(\mathrm{1}+\mathrm{logx}\right)}=\frac{\mathrm{p}^{\mathrm{p}} \left(\mathrm{logp}−\mathrm{1}\right)}{\mathrm{p}^{\mathrm{p}} \left(\mathrm{logp}+\mathrm{1}\right)}=\mathrm{1} \\ $$$$\frac{\mathrm{logp}−\mathrm{1}}{\mathrm{logp}+\mathrm{1}}=\mathrm{1} \\ $$$$\mathrm{Oh}\:\mathrm{i}\:\mathrm{think}\:\mathrm{it}\:\mathrm{is}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{P}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com