Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 46460 by Tawa1 last updated on 26/Oct/18

If  k is odd, then show that    1^k  + 2^k  + 3^k  + ... + n^k   is divisible by     1 + 2 + 3 + ... + n,     for every   n ∈ N

$$\mathrm{If}\:\:\mathrm{k}\:\mathrm{is}\:\mathrm{odd},\:\mathrm{then}\:\mathrm{show}\:\mathrm{that}\:\:\:\:\mathrm{1}^{\mathrm{k}} \:+\:\mathrm{2}^{\mathrm{k}} \:+\:\mathrm{3}^{\mathrm{k}} \:+\:...\:+\:\mathrm{n}^{\mathrm{k}} \:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\: \\ $$$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:...\:+\:\mathrm{n},\:\:\:\:\:\mathrm{for}\:\mathrm{every}\:\:\:\mathrm{n}\:\in\:\mathrm{N} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com