Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 46570 by scientist last updated on 28/Oct/18

If in triangle ABC   ((cosB)/b) =((cosC)/c), show that the  triangle is isosceles

$${If}\:{in}\:{triangle}\:{ABC}\:\:\:\frac{{cosB}}{{b}}\:=\frac{{cosC}}{{c}},\:{show}\:{that}\:{the} \\ $$$${triangle}\:{is}\:{isosceles} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Oct/18

((sinA)/a)=((sinB)/b)=((sinC)/c)  ((cosB)/(cosC))=((sinB)/(sinC))=(b/c)  sinBcosC−sinCcosB=0  sin(B−C)=0   so B−C=0  ∠B=∠C   proved

$$\frac{{sinA}}{{a}}=\frac{{sinB}}{{b}}=\frac{{sinC}}{{c}} \\ $$$$\frac{{cosB}}{{cosC}}=\frac{{sinB}}{{sinC}}=\frac{{b}}{{c}} \\ $$$${sinBcosC}−{sinCcosB}=\mathrm{0} \\ $$$${sin}\left({B}−{C}\right)=\mathrm{0}\:\:\:{so}\:{B}−{C}=\mathrm{0} \\ $$$$\angle{B}=\angle{C}\:\:\:{proved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com