Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 5897 by sanusihammed last updated on 04/Jun/16

If four people all said  HELLO to each other once. how many   times would the word  HELLO  be spoken ?

$${If}\:{four}\:{people}\:{all}\:{said}\:\:{HELLO}\:{to}\:{each}\:{other}\:{once}.\:{how}\:{many}\: \\ $$$${times}\:{would}\:{the}\:{word}\:\:{HELLO}\:\:{be}\:{spoken}\:? \\ $$

Answered by FilupSmith last updated on 04/Jun/16

person 1 talks to 3 people  person 2 talks to 2 people  person 3 talks to 1 people  everyone has talked to person 4.  ∴ = 3+2+1  times talked = 6

$${person}\:\mathrm{1}\:{talks}\:{to}\:\mathrm{3}\:{people} \\ $$$${person}\:\mathrm{2}\:{talks}\:{to}\:\mathrm{2}\:{people} \\ $$$${person}\:\mathrm{3}\:{talks}\:{to}\:\mathrm{1}\:{people} \\ $$$${everyone}\:{has}\:{talked}\:{to}\:{person}\:\mathrm{4}. \\ $$$$\therefore\:=\:\mathrm{3}+\mathrm{2}+\mathrm{1} \\ $$$${times}\:{talked}\:=\:\mathrm{6} \\ $$

Commented by FilupSmith last updated on 04/Jun/16

for n people:  times talked = Σ_(i=1) ^(n−1) i  =((n^2 −n)/2)

$${for}\:{n}\:{people}: \\ $$$${times}\:{talked}\:=\:\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{i} \\ $$$$=\frac{{n}^{\mathrm{2}} −{n}}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 04/Jun/16

I think if two person say hello both of them  will need to speak.  so word hello will be spoken 6×2=12 times

$$\mathrm{I}\:\mathrm{think}\:\mathrm{if}\:\mathrm{two}\:\mathrm{person}\:\mathrm{say}\:\mathrm{hello}\:\mathrm{both}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{will}\:\mathrm{need}\:\mathrm{to}\:\mathrm{speak}. \\ $$$$\mathrm{so}\:\mathrm{word}\:\mathrm{hello}\:\mathrm{will}\:\mathrm{be}\:\mathrm{spoken}\:\mathrm{6}×\mathrm{2}=\mathrm{12}\:\mathrm{times} \\ $$

Commented by FilupSmith last updated on 05/Jun/16

if everyone said hello to each other,  but no two people say hello to each other  more than once:  (1) says hello to 2 3 and 4  (2) says hello to 3 and 4 (1 already seid hello)  3 says hello to 4  everyones talked to 4 so 4 does nothing  =3+2+1=6    this is true only if they talk to each other  once only.

$${if}\:{everyone}\:{said}\:{hello}\:{to}\:{each}\:{other}, \\ $$$${but}\:{no}\:{two}\:{people}\:{say}\:{hello}\:{to}\:{each}\:{other} \\ $$$${more}\:{than}\:{once}: \\ $$$$\left(\mathrm{1}\right)\:{says}\:{hello}\:{to}\:\mathrm{2}\:\mathrm{3}\:{and}\:\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:{says}\:{hello}\:{to}\:\mathrm{3}\:{and}\:\mathrm{4}\:\left(\mathrm{1}\:{already}\:{seid}\:{hello}\right) \\ $$$$\mathrm{3}\:\mathrm{says}\:\mathrm{hello}\:\mathrm{to}\:\mathrm{4} \\ $$$$\mathrm{everyones}\:\mathrm{talked}\:\mathrm{to}\:\mathrm{4}\:\mathrm{so}\:\mathrm{4}\:\mathrm{does}\:\mathrm{nothing} \\ $$$$=\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{6} \\ $$$$ \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{true}\:\mathrm{only}\:\mathrm{if}\:\mathrm{they}\:\mathrm{talk}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other} \\ $$$$\mathrm{once}\:\mathrm{only}. \\ $$

Commented by FilupSmith last updated on 05/Jun/16

if 4 people said hello to each other  without restriction, each person  says hello (n−1) times for n people  =n(n−1)  =4(3)  =12

$${if}\:\mathrm{4}\:{people}\:{said}\:{hello}\:{to}\:{each}\:{other} \\ $$$${without}\:{restriction},\:{each}\:{person} \\ $$$${says}\:{hello}\:\left({n}−\mathrm{1}\right)\:{times}\:{for}\:{n}\:{people} \\ $$$$={n}\left({n}−\mathrm{1}\right) \\ $$$$=\mathrm{4}\left(\mathrm{3}\right) \\ $$$$=\mathrm{12} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com