Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 18232 by Joel577 last updated on 17/Jul/17

If f(x) = (√(x^2 (√(3(√(x^2 (√(3(√)...))))))))  find ∫ f(x) dx

$$\mathrm{If}\:{f}\left({x}\right)\:=\:\sqrt{{x}^{\mathrm{2}} \sqrt{\mathrm{3}\sqrt{{x}^{\mathrm{2}} \sqrt{\mathrm{3}\sqrt{}...}}}} \\ $$$$\mathrm{find}\:\int\:{f}\left({x}\right)\:{dx} \\ $$

Answered by alex041103 last updated on 17/Jul/17

f(x)=(√(x^2 (√(3f(x)))))  ⇒f^4 (x)=3x^4 f(x)  f^3 (x)=3x^4 ⇒f(x)=(3)^(1/3) ×x^(4/3)   ∫f(x)dx=(3)^(1/3) ∫x^(4/3) dx=(3)^(1/3) ×(3/7)x^(7/3)  + C

$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} \sqrt{\mathrm{3}{f}\left({x}\right)}} \\ $$$$\Rightarrow{f}^{\mathrm{4}} \left({x}\right)=\mathrm{3}{x}^{\mathrm{4}} {f}\left({x}\right) \\ $$$${f}^{\mathrm{3}} \left({x}\right)=\mathrm{3}{x}^{\mathrm{4}} \Rightarrow{f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{3}}×{x}^{\mathrm{4}/\mathrm{3}} \\ $$$$\int{f}\left({x}\right){dx}=\sqrt[{\mathrm{3}}]{\mathrm{3}}\int{x}^{\mathrm{4}/\mathrm{3}} {dx}=\sqrt[{\mathrm{3}}]{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{7}}{x}^{\mathrm{7}/\mathrm{3}} \:+\:{C} \\ $$

Commented by Joel577 last updated on 17/Jul/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com