Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 84861 by Jakir Sarif Mondal last updated on 16/Mar/20

If f(x) is an even function, then  ∫_( 0) ^π  f (cos x) dx = 2∫_( 0) ^(π/2)  f (cos x) dx

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function},\:\mathrm{then} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx}\:=\:\mathrm{2}\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx} \\ $$

Commented by mr W last updated on 17/Mar/20

f(x) is even, ⇒f(−x)=f(x)    ∫_0 ^π f(cos x)dx  =∫_0 ^(π/2) f(cos x)dx+∫_(π/2) ^π f(cos x)dx  =I_1 +I_2     let x=t+(π/2)  ⇒t=x−(π/2)  dx=dt  (π/2)≤x≤π ⇒0≤t≤(π/2)  cos x=cos (t+(π/2))=−cos t  f(cos x)=f(−cos t)=f(cos t)  I_2 =∫_(π/2) ^π f(cos x)dx  =∫_0 ^(π/2) f(cos t)dt  =I_1   ⇒∫_0 ^π f(cos x)dx=2I_1 =2∫_0 ^(π/2) f(cos x)dx

$${f}\left({x}\right)\:{is}\:{even},\:\Rightarrow{f}\left(−{x}\right)={f}\left({x}\right) \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\pi} {f}\left(\mathrm{cos}\:{x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{cos}\:{x}\right){dx}+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {f}\left(\mathrm{cos}\:{x}\right){dx} \\ $$$$={I}_{\mathrm{1}} +{I}_{\mathrm{2}} \\ $$$$ \\ $$$${let}\:{x}={t}+\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow{t}={x}−\frac{\pi}{\mathrm{2}} \\ $$$${dx}={dt} \\ $$$$\frac{\pi}{\mathrm{2}}\leqslant{x}\leqslant\pi\:\Rightarrow\mathrm{0}\leqslant{t}\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{cos}\:{x}=\mathrm{cos}\:\left({t}+\frac{\pi}{\mathrm{2}}\right)=−\mathrm{cos}\:{t} \\ $$$${f}\left(\mathrm{cos}\:{x}\right)={f}\left(−\mathrm{cos}\:{t}\right)={f}\left(\mathrm{cos}\:{t}\right) \\ $$$${I}_{\mathrm{2}} =\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {f}\left(\mathrm{cos}\:{x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{cos}\:{t}\right){dt} \\ $$$$={I}_{\mathrm{1}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} {f}\left(\mathrm{cos}\:{x}\right){dx}=\mathrm{2}{I}_{\mathrm{1}} =\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{cos}\:{x}\right){dx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com