Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115267 by bobhans last updated on 24/Sep/20

If f(x) is a differentiable function  defined  ∀x∈R such that (f(x))^3 −x+f(x)=0  then ∫_0 ^(√2)  f^(−1) (x) dx =

$${If}\:{f}\left({x}\right)\:{is}\:{a}\:{differentiable}\:{function} \\ $$$${defined}\:\:\forall{x}\in\mathbb{R}\:{such}\:{that}\:\left({f}\left({x}\right)\right)^{\mathrm{3}} −{x}+{f}\left({x}\right)=\mathrm{0} \\ $$$${then}\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\:{f}^{−\mathrm{1}} \left({x}\right)\:{dx}\:=\: \\ $$

Answered by Olaf last updated on 24/Sep/20

f^3 (t)−t+f(t) = 0  Let t = f^(−1) (x)  (fof^(−1) )^3 (x)−f^(−1) (x)+fof^(−1) (x) = 0  x^3 −f^(−1) (x)+x = 0  f^(−1) (x) = x^3 +x  ∫_0 ^(√2) f^(−1) (x)dx = [(x^4 /4)+(x^2 /2)]_0 ^(√2)  = 1+1 = 2

$${f}^{\mathrm{3}} \left({t}\right)−{t}+{f}\left({t}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{Let}\:{t}\:=\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left({f}\mathrm{o}{f}^{−\mathrm{1}} \right)^{\mathrm{3}} \left({x}\right)−{f}^{−\mathrm{1}} \left({x}\right)+{f}\mathrm{o}{f}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{0} \\ $$$${x}^{\mathrm{3}} −{f}^{−\mathrm{1}} \left({x}\right)+{x}\:=\:\mathrm{0} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=\:{x}^{\mathrm{3}} +{x} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} {f}^{−\mathrm{1}} \left({x}\right){dx}\:=\:\left[\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\mathrm{1}+\mathrm{1}\:=\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com