Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 13099 by Joel577 last updated on 14/May/17

If f(x + 5) = g(2x −1)  Find 2f^(−1) (x)    (A) g^(−1) (x) + 11        (D) g^(−1) (x/2) + 6  (B) g^(−1) (x) + 9           (E) g^(−1) (2x) + 6  (C) g^(−1) (x) + 6

$$\mathrm{If}\:{f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right) \\ $$$$\mathrm{Find}\:\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{11}\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:{g}^{−\mathrm{1}} \left({x}/\mathrm{2}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{B}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:{g}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{C}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{6} \\ $$

Answered by 433 last updated on 14/May/17

h(x)=x+5 & k(x)=2x−1  foh=gok  f=gokoh^(−1)   f^(−1) =hok^(−1) g^(−1)   2f^(−1) =2(hok^(−1) g^(−1) )  k^(−1) (x)=((x+1)/2)  2f^(−1) (x)=2h(k^(−1) (g^(−1) )(x)  =2h(((g^(−1) (x)+1)/2))  =2(((g^(−1) (x)+1)/2)+5)=g^(−1) (x)+1+10  =g^(−1) (x)+11

$${h}\left({x}\right)={x}+\mathrm{5}\:\&\:{k}\left({x}\right)=\mathrm{2}{x}−\mathrm{1} \\ $$$${foh}={gok} \\ $$$${f}={gokoh}^{−\mathrm{1}} \\ $$$${f}^{−\mathrm{1}} ={hok}^{−\mathrm{1}} {g}^{−\mathrm{1}} \\ $$$$\mathrm{2}{f}^{−\mathrm{1}} =\mathrm{2}\left({hok}^{−\mathrm{1}} {g}^{−\mathrm{1}} \right) \\ $$$${k}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{2}{h}\left({k}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \right)\left({x}\right)\right. \\ $$$$=\mathrm{2}{h}\left(\frac{{g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\left(\frac{{g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}}{\mathrm{2}}+\mathrm{5}\right)={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}+\mathrm{10} \\ $$$$={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{11} \\ $$

Commented by Joel577 last updated on 15/May/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Answered by mrW1 last updated on 14/May/17

f(x + 5) = g(2x −1)=u  ⇒x+5=f^(−1) (u)     ...(i)  ⇒2x−1=g^(−1) (u)   ...(ii)  2×(i)−(ii):  ⇒11=2f^(−1) (u)−g^(−1) (u)  ⇒2f^(−1) (u)=g^(−1) (u)+11  ⇒2f^(−1) (x)=g^(−1) (x)+11    ⇒Answer (A)

$${f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right)={u} \\ $$$$\Rightarrow{x}+\mathrm{5}={f}^{−\mathrm{1}} \left({u}\right)\:\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\mathrm{2}{x}−\mathrm{1}={g}^{−\mathrm{1}} \left({u}\right)\:\:\:...\left({ii}\right) \\ $$$$\mathrm{2}×\left({i}\right)−\left({ii}\right): \\ $$$$\Rightarrow\mathrm{11}=\mathrm{2}{f}^{−\mathrm{1}} \left({u}\right)−{g}^{−\mathrm{1}} \left({u}\right) \\ $$$$\Rightarrow\mathrm{2}{f}^{−\mathrm{1}} \left({u}\right)={g}^{−\mathrm{1}} \left({u}\right)+\mathrm{11} \\ $$$$\Rightarrow\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right)={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{11} \\ $$$$ \\ $$$$\Rightarrow{Answer}\:\left({A}\right) \\ $$

Commented by RasheedSindhi last updated on 14/May/17

Easy n simple!

$$\mathcal{E}\mathrm{asy}\:\mathrm{n}\:\mathrm{simple}! \\ $$

Commented by Joel577 last updated on 15/May/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com