Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 187311 by anurup last updated on 16/Feb/23

If f_k (x)=(1/k)(sin^k x+cos^k x) find f_4 (x)−f_6 (x)  f_4 (x)−f_6 (x)=(1/4)(sin^4 x +cos^4 x)−(1/6)(sin^6 x+cos^6 x)     =(1/2)sin^4 x((1/2)−(1/3)sin^2 x)+(1/2)cos^4 x((1/2)−(1/3)cos^2 x)

$$\mathrm{If}\:{f}_{{k}} \left({x}\right)=\frac{\mathrm{1}}{{k}}\left(\mathrm{sin}\:^{{k}} {x}+\mathrm{cos}\:^{{k}} {x}\right)\:\mathrm{find}\:{f}_{\mathrm{4}} \left({x}\right)−{f}_{\mathrm{6}} \left({x}\right) \\ $$$${f}_{\mathrm{4}} \left({x}\right)−{f}_{\mathrm{6}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}\:^{\mathrm{4}} {x}\:+\mathrm{cos}\:^{\mathrm{4}} {x}\right)−\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{6}} {x}\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{4}} {x}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}\:^{\mathrm{2}} {x}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:^{\mathrm{4}} {x}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}\:^{\mathrm{2}} {x}\right) \\ $$

Commented by anurup last updated on 16/Feb/23

Can anyone help me to solve this

$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{thi}{s} \\ $$

Commented by anurup last updated on 16/Feb/23

Can anybody tell me how to proceed further?

$$\mathrm{Can}\:\mathrm{anybody}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{how}\:\mathrm{to}\:\mathrm{proceed}\:\mathrm{further}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com