Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 207122 by MATHEMATICSAM last updated on 07/May/24

If e^y (x + 1) = 1 then prove that  (d^2 y/dx^2 ) = ((dy/dx))^2 .

$$\mathrm{If}\:{e}^{{y}} \left({x}\:+\:\mathrm{1}\right)\:=\:\mathrm{1}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} . \\ $$

Answered by BaliramKumar last updated on 07/May/24

e^y  = (1/(x+1))  y = −ln(x+1)  (dy/dx) = −(1/(x+1))    ⇒ ((dy/dx))^2  = ((1/(x+1)))^2   (dy/dx) = −(x+1)^(−1)            (d^2 y/dx^2 ) = −[−1(x+1)^(−2) ]  (d^2 y/dx^2 ) = (x+1)^(−2)  = ((1/(x+1)))^2   (d^2 y/dx^2 ) =  ((dy/dx))^2

$$\mathrm{e}^{\mathrm{y}} \:=\:\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}} \\ $$$$\mathrm{y}\:=\:−\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:−\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:\:\:\:\Rightarrow\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:=\:\left(\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:−\left(\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}} \:\:\:\:\:\:\:\:\: \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:−\left[−\mathrm{1}\left(\mathrm{x}+\mathrm{1}\right)^{−\mathrm{2}} \right] \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\left(\mathrm{x}+\mathrm{1}\right)^{−\mathrm{2}} \:=\:\left(\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com