Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208791 by MATHEMATICSAM last updated on 23/Jun/24

If ∫ (dx/(x^3 (1 + x^6 )^(2/3) )) = xf(x).(1 + x^6 )^(1/3)  + C   where C is constant of integration then  find f(x).

$$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$

Commented by mr W last updated on 23/Jun/24

∫...=−(((1+x^6 )^(1/3) )/(2x^2 ))+C  ⇒f(x)=−(1/(2x^3 ))

$$\int...=−\frac{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2}{x}^{\mathrm{2}} }+{C} \\ $$$$\Rightarrow{f}\left({x}\right)=−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com