Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205353 by MATHEMATICSAM last updated on 17/Mar/24

If ax^2  + bx + c = 0 had two roots p and q  and p^2  + q^2  = p^3  + q^3  then show that  b^3  − 2a^2 c + ab^2  = 3abc.

$$\mathrm{If}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{had}\:\mathrm{two}\:\mathrm{roots}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{and}\:{p}^{\mathrm{2}} \:+\:{q}^{\mathrm{2}} \:=\:{p}^{\mathrm{3}} \:+\:{q}^{\mathrm{3}} \:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${b}^{\mathrm{3}} \:−\:\mathrm{2}{a}^{\mathrm{2}} {c}\:+\:{ab}^{\mathrm{2}} \:=\:\mathrm{3}{abc}. \\ $$

Answered by sniper237 last updated on 17/Mar/24

p^2 +q^2 =(p+q)^2 −2pq=(b^2 /a^2 )−((2c)/a)  p^3 +q^3 =(p+q)^3 −3pq(p+q)=−(b^3 /a^3 )+((3bc)/a^2 )  ⇒^(×a^3 )  −b^3 +3abc=ab^2 −2ac

$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{2}{pq}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}} \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} =\left({p}+{q}\right)^{\mathrm{3}} −\mathrm{3}{pq}\left({p}+{q}\right)=−\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }+\frac{\mathrm{3}{bc}}{{a}^{\mathrm{2}} } \\ $$$$\overset{×{a}^{\mathrm{3}} } {\Rightarrow}\:−{b}^{\mathrm{3}} +\mathrm{3}{abc}={ab}^{\mathrm{2}} −\mathrm{2}{ac} \\ $$

Answered by A5T last updated on 17/Mar/24

p+q=((−b)/a),pq=(c/a)  (p+q)^2 −2pq=(p+q)^3 −3pq(p+q)  ⇒(b^2 /a^2 )−((2c)/a)=((−b^3 )/a^3 )+((3bc)/a^2 )⇒ab^2 −2a^2 c=−b^3 +3abc

$${p}+{q}=\frac{−{b}}{{a}},{pq}=\frac{{c}}{{a}} \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{2}{pq}=\left({p}+{q}\right)^{\mathrm{3}} −\mathrm{3}{pq}\left({p}+{q}\right) \\ $$$$\Rightarrow\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}}=\frac{−{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }+\frac{\mathrm{3}{bc}}{{a}^{\mathrm{2}} }\Rightarrow{ab}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {c}=−{b}^{\mathrm{3}} +\mathrm{3}{abc} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com