Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 215811 by MATHEMATICSAM last updated on 18/Jan/25

If α, β, γ, δ are the roots of   x^4  + x^3  + x^2  + x + 1 = 0 then find  α^(2021)  + β^(2021)  + γ^(2021)  + δ^(2021)  .

$$\mathrm{If}\:\alpha,\:\beta,\:\gamma,\:\delta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{4}} \:+\:{x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find} \\ $$$$\alpha^{\mathrm{2021}} \:+\:\beta^{\mathrm{2021}} \:+\:\gamma^{\mathrm{2021}} \:+\:\delta^{\mathrm{2021}} \:. \\ $$

Answered by A5T last updated on 18/Jan/25

(x−1)(x^4 +x^3 +x^2 +x+1)=x^5 −1=0  ⇒x^5 =1⇒α^5 =β^5 =γ^5 =δ^5 =1  ⇒α^(2020) =β^(2020) =γ^(2020) =δ^(2020) =1  ⇒α^(2021) +β^(2021) +γ^(2021) +δ^(2021) =α+β+γ+δ=−1

$$\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)=\mathrm{x}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{5}} =\mathrm{1}\Rightarrow\alpha^{\mathrm{5}} =\beta^{\mathrm{5}} =\gamma^{\mathrm{5}} =\delta^{\mathrm{5}} =\mathrm{1} \\ $$$$\Rightarrow\alpha^{\mathrm{2020}} =\beta^{\mathrm{2020}} =\gamma^{\mathrm{2020}} =\delta^{\mathrm{2020}} =\mathrm{1} \\ $$$$\Rightarrow\alpha^{\mathrm{2021}} +\beta^{\mathrm{2021}} +\gamma^{\mathrm{2021}} +\delta^{\mathrm{2021}} =\alpha+\beta+\gamma+\delta=−\mathrm{1} \\ $$

Answered by AntonCWX last updated on 18/Jan/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com