Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182530 by HeferH last updated on 10/Dec/22

If:   (a/x^9 ) + (x^9 /a) = 7   find: ((a/x^9 ))^(1/4)  + ((x^9 /a))^(1/4)

$${If}:\:\:\:\frac{{a}}{{x}^{\mathrm{9}} }\:+\:\frac{{x}^{\mathrm{9}} }{{a}}\:=\:\mathrm{7} \\ $$$$\:{find}:\:\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}\:+\:\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}} \\ $$

Answered by mr W last updated on 10/Dec/22

let t=(a/x^9 )  say (t)^(1/4) +((1/t))^(1/4) =x >0  ⇒ (√t)+(√(1/t))=x^2 −2  ⇒ t+(1/t)=(x^2 −2)^2 −2  ⇒ 7=(x^2 −2)^2 −2  ⇒ (x^2 −2)^2 =9  ⇒ x^2 −2=3   (−3 rejected)  ⇒ x^2 =5  ⇒ x=(√5)   (−(√5) rejected)  i.e.  ((a/x^9 ))^(1/4) +((x^9 /a))^(1/4) =(√5)

$${let}\:{t}=\frac{{a}}{{x}^{\mathrm{9}} } \\ $$$${say}\:\sqrt[{\mathrm{4}}]{{t}}+\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}}{{t}}}={x}\:>\mathrm{0} \\ $$$$\Rightarrow\:\sqrt{{t}}+\sqrt{\frac{\mathrm{1}}{{t}}}={x}^{\mathrm{2}} −\mathrm{2} \\ $$$$\Rightarrow\:{t}+\frac{\mathrm{1}}{{t}}=\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{7}=\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\Rightarrow\:\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} −\mathrm{2}=\mathrm{3}\:\:\:\left(−\mathrm{3}\:{rejected}\right) \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} =\mathrm{5} \\ $$$$\Rightarrow\:{x}=\sqrt{\mathrm{5}}\:\:\:\left(−\sqrt{\mathrm{5}}\:{rejected}\right) \\ $$$${i}.{e}.\:\:\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}+\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}}=\sqrt{\mathrm{5}} \\ $$

Answered by Frix last updated on 10/Dec/22

t+(1/t)=7 ⇒ t=ϕ^4  ⇒ answer is (√5)

$${t}+\frac{\mathrm{1}}{{t}}=\mathrm{7}\:\Rightarrow\:{t}=\varphi^{\mathrm{4}} \:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\sqrt{\mathrm{5}} \\ $$

Commented by manxsol last updated on 11/Dec/22

Sir Frix what is  ϕ^4 , what is the theory?

$${Sir}\:{Frix}\:{what}\:{is}\:\:\varphi^{\mathrm{4}} ,\:{what}\:{is}\:{the}\:{theory}? \\ $$

Commented by Frix last updated on 11/Dec/22

ϕ=((1+(√5))/2); ϕ^4 =((7+3(√5))/2)  (1/ϕ)=((−1+(√5))/2); (1/ϕ^4 )=((7−3(√5))/2)

$$\varphi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}};\:\varphi^{\mathrm{4}} =\frac{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\varphi}=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}};\:\frac{\mathrm{1}}{\varphi^{\mathrm{4}} }=\frac{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Commented by manxsol last updated on 12/Dec/22

thanks,Sir Frix is golden number. check my next question

$${thanks},{Sir}\:{Frix}\:{is}\:{golden}\:{number}.\:{check}\:{my}\:{next}\:{question} \\ $$

Answered by Ar Brandon last updated on 11/Dec/22

(a/x^9 )+(x^9 /a)=7 ⇒((√(a/x^9 ))+(√(x^9 /a)))^2 −2=7  ⇒(√(a/x^9 ))+(√(x^9 /a))=3  ⇒(((a/x^9 ))^(1/4) +((x^9 /a))^(1/4) )^2 −2=3  ⇒((a/x^9 ))^(1/4) +((x^9 /a))^(1/4) =(√5)

$$\frac{{a}}{{x}^{\mathrm{9}} }+\frac{{x}^{\mathrm{9}} }{{a}}=\mathrm{7}\:\Rightarrow\left(\sqrt{\frac{{a}}{{x}^{\mathrm{9}} }}+\sqrt{\frac{{x}^{\mathrm{9}} }{{a}}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{7} \\ $$$$\Rightarrow\sqrt{\frac{{a}}{{x}^{\mathrm{9}} }}+\sqrt{\frac{{x}^{\mathrm{9}} }{{a}}}=\mathrm{3} \\ $$$$\Rightarrow\left(\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}+\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{3} \\ $$$$\Rightarrow\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}+\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}}=\sqrt{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com