Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 207021 by efronzo1 last updated on 03/May/24

  If  a_(n+1) =2−5a_n  and a_4 = −8    prove that a_(43) −a_(30)  divisible by 5

$$\:\:{If}\:\:{a}_{{n}+\mathrm{1}} =\mathrm{2}−\mathrm{5}{a}_{{n}} \:{and}\:{a}_{\mathrm{4}} =\:−\mathrm{8} \\ $$$$\:\:{prove}\:{that}\:{a}_{\mathrm{43}} −{a}_{\mathrm{30}} \:{divisible}\:{by}\:\mathrm{5} \\ $$

Commented by mr W last updated on 04/May/24

as shown in Q206997 we can get  a_n =−(((−5)^(n−2) )/3)+(1/3)  a_(43) −a_(30) =(((−5)^(28) −(−5)^(41) )/3)=((5^(28) (1+5^(13) ))/3)≡  1+5^(13) =1+(2×3−1)^(13)                =1+(multiple of 3)−1               =(multiple of 3)  ⇒a_(43) −a_(30)  is divisible by 5

$${as}\:{shown}\:{in}\:{Q}\mathrm{206997}\:{we}\:{can}\:{get} \\ $$$${a}_{{n}} =−\frac{\left(−\mathrm{5}\right)^{{n}−\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${a}_{\mathrm{43}} −{a}_{\mathrm{30}} =\frac{\left(−\mathrm{5}\right)^{\mathrm{28}} −\left(−\mathrm{5}\right)^{\mathrm{41}} }{\mathrm{3}}=\frac{\mathrm{5}^{\mathrm{28}} \left(\mathrm{1}+\mathrm{5}^{\mathrm{13}} \right)}{\mathrm{3}}\equiv \\ $$$$\mathrm{1}+\mathrm{5}^{\mathrm{13}} =\mathrm{1}+\left(\mathrm{2}×\mathrm{3}−\mathrm{1}\right)^{\mathrm{13}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\left({multiple}\:{of}\:\mathrm{3}\right)−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({multiple}\:{of}\:\mathrm{3}\right) \\ $$$$\Rightarrow{a}_{\mathrm{43}} −{a}_{\mathrm{30}} \:{is}\:{divisible}\:{by}\:\mathrm{5} \\ $$

Answered by Berbere last updated on 04/May/24

a_(n+1) ≡2[5];∀n≥4∴ a_(n+1) =2−5.a_n ∵  a_(43) ≡2[5];a_(30) ≡2[5]⇒a_(43) −a_(30) ≡0[5]

$${a}_{{n}+\mathrm{1}} \equiv\mathrm{2}\left[\mathrm{5}\right];\forall{n}\geqslant\mathrm{4}\therefore\:{a}_{{n}+\mathrm{1}} =\mathrm{2}−\mathrm{5}.{a}_{{n}} \because \\ $$$${a}_{\mathrm{43}} \equiv\mathrm{2}\left[\mathrm{5}\right];{a}_{\mathrm{30}} \equiv\mathrm{2}\left[\mathrm{5}\right]\Rightarrow{a}_{\mathrm{43}} −{a}_{\mathrm{30}} \equiv\mathrm{0}\left[\mathrm{5}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com