Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177932 by Spillover last updated on 11/Oct/22

If a,b,c are in A.P show that  (1/( (√b)+(√c))),(1/( (√c) +(√a))),(1/( (√b)+(√a))),are in A.P

$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}\:\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{c}}\:+\sqrt{\mathrm{a}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{a}}},\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P} \\ $$

Answered by Ar Brandon last updated on 11/Oct/22

a, b, c in AP ⇒b−a=c−b=d (common diff)  If u_1 =(1/( (√b)+(√c))), u_2 =(1/( (√c)+(√b))), u_3 =(1/( (√b)+(√a))) are in AP  then u_2  is the arithmetic mean of u_1  and u_3   ⇒ u_1 +u_3 =2u_2   (1/( (√b)+(√c))), (1/( (√c)+(√a))), (1/( (√b)+(√a))) ⇔ (((√c)−(√b))/(c−b)), (((√c)−(√a))/(c−a)), (((√b)−(√a))/(b−a))  ⇔(((√c)−(√b))/d), (((√c)−(√a))/(2d)), (((√b)−(√a))/d)  [c−a=(c−b)+(b−a)=2d]  Now u_1 =(((√c)−(√b))/d), u_2 =(((√c)−(√a))/(2d)), u_3 =(((√b)−(√a))/d)  u_1 +u_3 =(((√c)−(√b))/d)+(((√b)−(√a))/d)=(((√c)−(√a))/d)=2u_2

$${a},\:{b},\:{c}\:\mathrm{in}\:{AP}\:\Rightarrow{b}−{a}={c}−{b}={d}\:\left(\mathrm{common}\:\mathrm{diff}\right) \\ $$$$\mathrm{If}\:{u}_{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{{b}}+\sqrt{{c}}},\:{u}_{\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{{c}}+\sqrt{{b}}},\:{u}_{\mathrm{3}} =\frac{\mathrm{1}}{\:\sqrt{{b}}+\sqrt{{a}}}\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP} \\ $$$$\mathrm{then}\:{u}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of}\:{u}_{\mathrm{1}} \:\mathrm{and}\:{u}_{\mathrm{3}} \\ $$$$\Rightarrow\:{u}_{\mathrm{1}} +{u}_{\mathrm{3}} =\mathrm{2}{u}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{b}}+\sqrt{{c}}},\:\frac{\mathrm{1}}{\:\sqrt{{c}}+\sqrt{{a}}},\:\frac{\mathrm{1}}{\:\sqrt{{b}}+\sqrt{{a}}}\:\Leftrightarrow\:\frac{\sqrt{{c}}−\sqrt{{b}}}{{c}−{b}},\:\frac{\sqrt{{c}}−\sqrt{{a}}}{{c}−{a}},\:\frac{\sqrt{{b}}−\sqrt{{a}}}{{b}−{a}} \\ $$$$\Leftrightarrow\frac{\sqrt{{c}}−\sqrt{{b}}}{{d}},\:\frac{\sqrt{{c}}−\sqrt{{a}}}{\mathrm{2}{d}},\:\frac{\sqrt{{b}}−\sqrt{{a}}}{{d}}\:\:\left[{c}−{a}=\left({c}−{b}\right)+\left({b}−{a}\right)=\mathrm{2}{d}\right] \\ $$$$\mathrm{Now}\:{u}_{\mathrm{1}} =\frac{\sqrt{{c}}−\sqrt{{b}}}{{d}},\:{u}_{\mathrm{2}} =\frac{\sqrt{{c}}−\sqrt{{a}}}{\mathrm{2}{d}},\:{u}_{\mathrm{3}} =\frac{\sqrt{{b}}−\sqrt{{a}}}{{d}} \\ $$$${u}_{\mathrm{1}} +{u}_{\mathrm{3}} =\frac{\sqrt{{c}}−\sqrt{{b}}}{{d}}+\frac{\sqrt{{b}}−\sqrt{{a}}}{{d}}=\frac{\sqrt{{c}}−\sqrt{{a}}}{{d}}=\mathrm{2}{u}_{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com