Question Number 193180 by BaliramKumar last updated on 06/Jun/23 | ||
![]() | ||
$$\mathrm{If}\:{a}\:+\:{b}\:=\:\mathrm{1001}\:\&\:\mathrm{HCF}\left({a},\:{b}\right)\:=\:\mathrm{13}\: \\ $$$$\mathrm{then}\:\mathrm{how}\:\mathrm{many}\:\mathrm{set}\:\mathrm{of}\:{a}\:\&\:{b}. \\ $$ | ||
Answered by Subhi last updated on 06/Jun/23 | ||
![]() | ||
$${a}\:=\:\mathrm{13}{k} \\ $$$${b}\:=\:\mathrm{13}{m} \\ $$$${a}+{b}\:=\:\mathrm{1001}\:=\:\mathrm{13}\left({k}+{m}\right) \\ $$$${k}+{m}\:=\:\mathrm{77} \\ $$$${there}\:{are}\:\mathrm{78}\:{pairs} \\ $$$$\left(\mathrm{77},\mathrm{0}\right),\left(\mathrm{76},\mathrm{1}\right).............\left(\mathrm{1},\mathrm{76}\right),\left(\mathrm{0},\mathrm{77}\right) \\ $$$${there}\:{are}\:{restricrions}\:{when}\:{m}\:{and}\:{k}\:{are}\:{divisible}\:{by}\:\mathrm{11}\:{or}\:\mathrm{7} \\ $$$${m}\:=\:\mathrm{7}{l} \\ $$$${k}\:=\:\mathrm{7}{n} \\ $$$${k}+{m}\:=\:\mathrm{77}\:=\:\mathrm{7}\left({l}+{n}\right) \\ $$$${l}+{n}\:=\:\mathrm{11} \\ $$$$\left({l},{n}\right)\:=\:\left(\mathrm{10},\mathrm{1}\right),\left(\mathrm{9},\mathrm{2}\right),\left(\mathrm{8},\mathrm{3}\right),\left(\mathrm{7},\mathrm{4}\right),\left(\mathrm{6},\mathrm{5}\right)........\left(\mathrm{1},\mathrm{10}\right) \\ $$$$\mathrm{10}\:{pairs}\:\:{are}\:{excluded} \\ $$$$\left({ii}\right)\:{m}\:=\:\mathrm{11}{g} \\ $$$${k}\:=\:\mathrm{11}{h} \\ $$$${k}+{m}\:=\:\mathrm{77}\:=\:\mathrm{11}\left({g}+{h}\right) \\ $$$${g}+{h}\:=\:\mathrm{7} \\ $$$$\left({g},{h}\right)\:=\:\left(\mathrm{6},\mathrm{1}\right),\left(\mathrm{5},\mathrm{2}\right),\left(\mathrm{4},\mathrm{3}\right).....\left(\mathrm{1},\mathrm{6}\right) \\ $$$$\mathrm{6}\:{pairs}\:{are}\:{excluded} \\ $$$$\mathrm{78}−\mathrm{6}−\mathrm{10}\:=\:\mathrm{62} \\ $$ | ||
Commented by MM42 last updated on 06/Jun/23 | ||
![]() | ||
$${there}\:{is}\:{no}\:{diffrence}\:{between}\:{the}\:{two}\:{numbers}\: \\ $$$${a}=\mathrm{1},{b}=\mathrm{76}\:{and}\:{a}=\mathrm{76}\:,\:{b}=\mathrm{1}\:{and}\:... \\ $$ | ||
Commented by Subhi last updated on 06/Jun/23 | ||
![]() | ||
$$\left(\mathrm{1},\mathrm{76}\right)\:{is}\:{different}\:{to}\:\left(\mathrm{76},\mathrm{1}\right) \\ $$$${values}\:{of}\:{a}\:{and}\:{b}\:\:{differ} \\ $$$$,{but}\:{you}\:{are}\:{right}\:{that}\:{there}\:{restrictions}\:{for}\:{some}\:{values}\:{for}\:{a},{b}\:{when}\:{factors}\:{k},{m}\:{are}\:{divisible}\:{by}\:\mathrm{11}\:{or}\:\mathrm{7} \\ $$ | ||
Commented by Subhi last updated on 06/Jun/23 | ||
![]() | ||
$${Thank}\:{you}\:{for}\:{that}\:{point} \\ $$ | ||
Commented by BaliramKumar last updated on 07/Jun/23 | ||
![]() | ||
$$\mathrm{Sir} \\ $$$$\mathrm{0},\:\mathrm{77}\Rightarrow\:\mathrm{13}×\left(\mathrm{0},\:\mathrm{77}\right)\:=\:\left(\mathrm{0},\:\mathrm{1001}\right) \\ $$$$\mathrm{HCF}\left(\mathrm{0},\:\mathrm{1001}\right)\:=\:? \\ $$ | ||
Commented by MM42 last updated on 07/Jun/23 | ||
![]() | ||
$${you}\:{are}\:{right} \\ $$ | ||
Answered by MM42 last updated on 07/Jun/23 | ||
![]() | ||
$${a}=\mathrm{13}{a}'\:\&\:\:{b}=\mathrm{13}{b}'\:;\:\left({a}',{b}'\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{13}{a}'+\mathrm{13}{b}'=\mathrm{1001}\Rightarrow{a}'+{b}'=\mathrm{77} \\ $$$${W}=\left\{\left\{{a}',{b}'\right\}\::\:\:{a}'+{b}'=\mathrm{77}\:\:,\:\left({a}',{b}'\right)=\mathrm{1}\right\} \\ $$$${S}=\left\{\left\{{m},{n}\right\}\::\:{m}+{n}=\mathrm{77}\:\right\}=\left\{\left\{\mathrm{1},\mathrm{76}\right\},\left\{\mathrm{2},\mathrm{75}\right\},...,\left\{\mathrm{38},\mathrm{39}\right\}\right\}\Rightarrow\mid{S}\:\mid=\:\mathrm{38} \\ $$$${A}=\left\{\left\{{m},{n}\right\}\::\:{m}+{n}=\mathrm{77}\:,\:\left({m},{n}\right)=\mathrm{7}\:\right\} \\ $$$$\Rightarrow{A}=\left\{\left\{\mathrm{7},\mathrm{70}\right\},\left\{\mathrm{14},\mathrm{63}\right\},\left\{\mathrm{21},\mathrm{56}\right\},\left\{\mathrm{28},\mathrm{49}\right\},\left\{\mathrm{35},\mathrm{42}\right\}\right\}\Rightarrow\mid{A}\mid=\:\mathrm{5} \\ $$$${B}=\left\{\left\{{m},{n}\right\}\::\:{m}+{n}=\mathrm{77}\:,\:\left({m},{n}\right)=\mathrm{11}\:\right\} \\ $$$$\Rightarrow{A}=\left\{\left\{\mathrm{11},\mathrm{66}\right\},\left\{\mathrm{22},\mathrm{55}\right\},\left\{\mathrm{33},\mathrm{44}\right\}\right\}\Rightarrow\mid{B}\mid=\:\mathrm{3} \\ $$$$\Rightarrow\mid{W}\mid=\mathrm{38}−\mathrm{8}=\mathrm{30} \\ $$ | ||
Answered by BaliramKumar last updated on 18/Nov/23 | ||
![]() | ||
$$\frac{\phi\left(\frac{\mathrm{1001}}{\mathrm{13}}\right)}{\mathrm{2}}\:=\:\frac{\phi\left(\frac{\mathrm{7}×\mathrm{11}×\cancel{\mathrm{13}}}{\cancel{\mathrm{13}}}\right)}{\mathrm{2}}\:=\:\frac{\phi\left(\mathrm{7}×\mathrm{11}\right)}{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{\left(\mathrm{7}−\mathrm{1}\right)\left(\mathrm{11}−\mathrm{1}\right)}{\mathrm{2}}\:=\:\frac{\mathrm{6}×\mathrm{10}}{\mathrm{2}}\:=\:\mathrm{30}\:\mathrm{unordered}\:\mathrm{pairs} \\ $$$$\Rightarrow\:\mathrm{60}\:\mathrm{ordered}\:\mathrm{pairs} \\ $$ | ||