Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57389 by rahul 19 last updated on 03/Apr/19

If aεR and the equation :  −3{x}^2 +2{x}+a^2 =0 has no integral  solution, then all possible value of a  lie in the interval :  (a)(−1,0)U(0,1)   (b)(1,2)  (c) (−2,−1)             (d)(−∞,−2)U(2,∞)

$${If}\:{a}\epsilon{R}\:{and}\:{the}\:{equation}\:: \\ $$$$−\mathrm{3}\left\{{x}\right\}^{\mathrm{2}} +\mathrm{2}\left\{{x}\right\}+{a}^{\mathrm{2}} =\mathrm{0}\:{has}\:{no}\:{integral} \\ $$$${solution},\:{then}\:{all}\:{possible}\:{value}\:{of}\:{a} \\ $$$${lie}\:{in}\:{the}\:{interval}\:: \\ $$$$\left({a}\right)\left(−\mathrm{1},\mathrm{0}\right)\mathrm{U}\left(\mathrm{0},\mathrm{1}\right)\:\:\:\left({b}\right)\left(\mathrm{1},\mathrm{2}\right) \\ $$$$\left({c}\right)\:\left(−\mathrm{2},−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\left(−\infty,−\mathrm{2}\right)\mathrm{U}\left(\mathrm{2},\infty\right) \\ $$

Answered by einsteindrmaths@hotmail.fr last updated on 03/Apr/19

{x}∈[0.1[ so is the same to say  −3y^2 +2y+a^2 =0 has no solution]  in[0.1[the solution of −3y^2 +2y+a^2 =0 are [−2+(√((4+12a^2 )))]/−6 and  [−2−(√((4+12a^2 )  ))]/−6  only(2+(√((4+12a^2 )))  )/6 is greater than]zer  so we want   [2+(√((4+12a^2 ))) ]/6 <1=>(√((4+12a^2 )))<4===>12a^2 <12

$$\left\{{x}\right\}\in\left[\mathrm{0}.\mathrm{1}\left[\:{so}\:{is}\:{the}\:{same}\:{to}\:{say}\:\:−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{y}+{a}^{\mathrm{2}} =\mathrm{0}\:{has}\:{no}\:{solution}\right]\right. \\ $$$${in}\left[\mathrm{0}.\mathrm{1}\left[{the}\:{solution}\:{of}\:−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{y}+{a}^{\mathrm{2}} =\mathrm{0}\:{are}\:\left[−\mathrm{2}+\sqrt{\left(\mathrm{4}+\mathrm{12}{a}^{\mathrm{2}} \right)}\right]/−\mathrm{6}\:{and}\right.\right. \\ $$$$\left.\left[\left.−\mathrm{2}−\sqrt{\left(\mathrm{4}+\mathrm{12}{a}^{\mathrm{2}} \right)\:\:}\right]/−\mathrm{6}\:\:{only}\left(\mathrm{2}+\sqrt{\left(\mathrm{4}+\mathrm{12}{a}^{\mathrm{2}} \right.}\right)\:\:\right)/\mathrm{6}\:{is}\:{greater}\:{than}\right]{zer} \\ $$$${so}\:{we}\:{want}\:\:\:\left[\mathrm{2}+\sqrt{\left(\mathrm{4}+\mathrm{12}{a}^{\mathrm{2}} \right)}\:\right]/\mathrm{6}\:<\mathrm{1}=>\sqrt{\left(\mathrm{4}+\mathrm{12}{a}^{\mathrm{2}} \right)}<\mathrm{4}===>\mathrm{12}{a}^{\mathrm{2}} <\mathrm{12} \\ $$

Commented by rahul 19 last updated on 03/Apr/19

thanks sir!

$${thanks}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com