Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202044 by hardmath last updated on 19/Dec/23

If  a = 9999999998000000001  Find  A = (((√a) + 1))^(1/9)    →   A = ?

$$\mathrm{If} \\ $$$$\mathrm{a}\:=\:\mathrm{9999999998000000001} \\ $$$$\mathrm{Find} \\ $$$$\mathrm{A}\:=\:\sqrt[{\mathrm{9}}]{\sqrt{\mathrm{a}}\:+\:\mathrm{1}}\:\:\:\rightarrow\:\:\:\mathrm{A}\:=\:? \\ $$

Commented by mr W last updated on 19/Dec/23

do you have a calculator? you′ll get  A≈11.364  please check your question again,  maybe you have written one 9 too   much!

$${do}\:{you}\:{have}\:{a}\:{calculator}?\:{you}'{ll}\:{get} \\ $$$${A}\approx\mathrm{11}.\mathrm{364} \\ $$$${please}\:{check}\:{your}\:{question}\:{again}, \\ $$$${maybe}\:{you}\:{have}\:{written}\:{one}\:\mathrm{9}\:{too}\: \\ $$$${much}! \\ $$

Answered by esmaeil last updated on 19/Dec/23

(((√(99999.99999∗99999.99999∗10^8 ))+1))^(1/9) =  ((99999.99999∗10^4 +1))^(1/9) =  ((999999999.9+1))^(1/9) ≅10

$$\sqrt[{\mathrm{9}}]{\sqrt{\mathrm{99999}.\mathrm{99999}\ast\mathrm{99999}.\mathrm{99999}\ast\mathrm{10}^{\mathrm{8}} }+\mathrm{1}}= \\ $$$$\sqrt[{\mathrm{9}}]{\mathrm{99999}.\mathrm{99999}\ast\mathrm{10}^{\mathrm{4}} +\mathrm{1}}= \\ $$$$\sqrt[{\mathrm{9}}]{\mathrm{999999999}.\mathrm{9}+\mathrm{1}}\cong\mathrm{10} \\ $$

Answered by mr W last updated on 20/Dec/23

99^2 =9801  999^2 =998001  ...  999...9^2 _(n times) =(10^n −1)^2 =(10^n −2)×10^n +1=999...9_(n−1) 8000...0_(n−1) 1    a=99999999_(8 times) 800000000_(8 times) 1=999 999 999^2   (√a)=999 999 999  (√a)+1=999 999 999+1=1 000 000 000=10^9   A=(((√a)+1))^(1/9) =((10^9 ))^(1/9) =10 ✓

$$\mathrm{99}^{\mathrm{2}} =\mathrm{9801} \\ $$$$\mathrm{999}^{\mathrm{2}} =\mathrm{998001} \\ $$$$... \\ $$$$\underset{{n}\:{times}} {\mathrm{999}...\mathrm{9}^{\mathrm{2}} }=\left(\mathrm{10}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{10}^{{n}} −\mathrm{2}\right)×\mathrm{10}^{{n}} +\mathrm{1}=\underset{{n}−\mathrm{1}} {\mathrm{999}...\mathrm{9}8}\underset{{n}−\mathrm{1}} {\mathrm{000}...\mathrm{0}1} \\ $$$$ \\ $$$${a}=\underset{\mathrm{8}\:{times}} {\mathrm{99999999}8}\underset{\mathrm{8}\:{times}} {\mathrm{00000000}1}=\mathrm{999}\:\mathrm{999}\:\mathrm{999}^{\mathrm{2}} \\ $$$$\sqrt{{a}}=\mathrm{999}\:\mathrm{999}\:\mathrm{999} \\ $$$$\sqrt{{a}}+\mathrm{1}=\mathrm{999}\:\mathrm{999}\:\mathrm{999}+\mathrm{1}=\mathrm{1}\:\mathrm{000}\:\mathrm{000}\:\mathrm{000}=\mathrm{10}^{\mathrm{9}} \\ $$$${A}=\sqrt[{\mathrm{9}}]{\sqrt{{a}}+\mathrm{1}}=\sqrt[{\mathrm{9}}]{\mathrm{10}^{\mathrm{9}} }=\mathrm{10}\:\checkmark \\ $$

Commented by hardmath last updated on 20/Dec/23

cool dear professor thankyou

$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thankyou} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com