Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 130581 by bramlexs22 last updated on 27/Jan/21

If a_1 ,a_2  ,a_3  are in AP and d is the common  difference then tan^(−1) ((d/(1+a_1 a_2 )))+tan^(−1) ((d/(1+a_2 a_3 )))=?

$$\mathrm{If}\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} \:,\mathrm{a}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{and}\:\mathrm{d}\:\mathrm{is}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{then}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{d}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} \mathrm{a}_{\mathrm{2}} }\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{d}}{\mathrm{1}+\mathrm{a}_{\mathrm{2}} \mathrm{a}_{\mathrm{3}} }\right)=? \\ $$

Answered by som(math1967) last updated on 27/Jan/21

tan^(−1) (((a_2 −a_1 )/(1+a_1 a_2 )))+tan^(−1) (((a_3 −a_2 )/(1+a_2 −a_3 )))  =tan^(−1) a_2 −tan^(−1) a_1 +tan^(−1) a_3 −tan^(−1) a_2   =tan^(−1) a_3 −tan^(−1) a_1   [d=a_2 −a_1 =a_3 −a_2 ]

$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}_{\mathrm{2}} −{a}_{\mathrm{1}} }{\mathrm{1}+{a}_{\mathrm{1}} {a}_{\mathrm{2}} }\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}_{\mathrm{3}} −{a}_{\mathrm{2}} }{\mathrm{1}+{a}_{\mathrm{2}} −{a}_{\mathrm{3}} }\right) \\ $$$$=\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{2}} −\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{1}} +\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{3}} −\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{2}} \\ $$$$=\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{3}} −\mathrm{tan}^{−\mathrm{1}} {a}_{\mathrm{1}} \\ $$$$\left[{d}={a}_{\mathrm{2}} −{a}_{\mathrm{1}} ={a}_{\mathrm{3}} −{a}_{\mathrm{2}} \right] \\ $$

Commented by bramlexs22 last updated on 27/Jan/21

Commented by bramlexs22 last updated on 27/Jan/21

=tan^(−1) (((a_3 −a_1 )/(1+a_1 a_3 )))=tan^(−1) (((2d)/(1+a_1 a_3 )))

$$=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{a}_{\mathrm{3}} −\mathrm{a}_{\mathrm{1}} }{\mathrm{1}+\mathrm{a}_{\mathrm{1}} \mathrm{a}_{\mathrm{3}} }\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2d}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} \mathrm{a}_{\mathrm{3}} }\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com