Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114676 by ZiYangLee last updated on 20/Sep/20

If a^(1/2) −a^(−(1/2)) =1, prove that a+a^(−1) =3

$$\mathrm{If}\:{a}^{\frac{\mathrm{1}}{\mathrm{2}}} −{a}^{−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1},\:\mathrm{prove}\:\mathrm{that}\:{a}+{a}^{−\mathrm{1}} =\mathrm{3} \\ $$

Answered by Olaf last updated on 20/Sep/20

(√a)+(1/( (√a))) = 1  ⇒ ((√a)+(1/( (√a))))^2  = 1  a+(1/a)+2 = 1 ⇒ a+a^(−1)  = −1 !  But if (√a)−(1/( (√a))) = 1  ⇒ ((√a)−(1/( (√a))))^2  = 1  a+(1/a)−2 = 1  a+a^(−1)  = 3

$$\sqrt{{a}}+\frac{\mathrm{1}}{\:\sqrt{{a}}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\left(\sqrt{{a}}+\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$${a}+\frac{\mathrm{1}}{{a}}+\mathrm{2}\:=\:\mathrm{1}\:\Rightarrow\:{a}+{a}^{−\mathrm{1}} \:=\:−\mathrm{1}\:! \\ $$$$\mathrm{But}\:\mathrm{if}\:\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\left(\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$${a}+\frac{\mathrm{1}}{{a}}−\mathrm{2}\:=\:\mathrm{1} \\ $$$${a}+{a}^{−\mathrm{1}} \:=\:\mathrm{3} \\ $$

Commented by ZiYangLee last updated on 20/Sep/20

oops typo haha sry sir

$$\mathrm{oops}\:\mathrm{typo}\:\mathrm{haha}\:\mathrm{sry}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com