Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 51248 by Tawa1 last updated on 25/Dec/18

If     ((R_1  + jωL)/R_3 )  =  (R_2 /(R_4  − j (1/(ωC))))  ,   where  R_1 , R_2 , R_3 , R_4 , ω, L and C  are real ,  show that    L = ((C R_2 R_3 )/(ω^2 C^2 R_4 ^2  + 1))

$$\mathrm{If}\:\:\:\:\:\frac{\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{j}\omega\mathrm{L}}{\mathrm{R}_{\mathrm{3}} }\:\:=\:\:\frac{\mathrm{R}_{\mathrm{2}} }{\mathrm{R}_{\mathrm{4}} \:−\:\mathrm{j}\:\frac{\mathrm{1}}{\omega\mathrm{C}}}\:\:,\:\:\:\mathrm{where}\:\:\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} ,\:\mathrm{R}_{\mathrm{3}} ,\:\mathrm{R}_{\mathrm{4}} ,\:\omega,\:\mathrm{L}\:\mathrm{and}\:\mathrm{C} \\ $$$$\mathrm{are}\:\mathrm{real}\:,\:\:\mathrm{show}\:\mathrm{that}\:\:\:\:\mathrm{L}\:=\:\frac{\mathrm{C}\:\mathrm{R}_{\mathrm{2}} \mathrm{R}_{\mathrm{3}} }{\omega^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \mathrm{R}_{\mathrm{4}} ^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18

(R_1 /R_3 )+j((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))(R_4 +j(1/(wC)))  comparing real and imaginary part  ((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))((1/(wC)))  L=(R_3 /w)×((R_2 /(wC))/((R_4 w^2 C^2 +1)/(w^2 C^2 )))  L=(R_3 /w)×((R_2 w^2 C^2 )/(wC(R_4 w^2 C^2 +1)))=((R_2 R_3 C)/(1+R_4 w^2 C^2 ))

$$\frac{{R}_{\mathrm{1}} }{{R}_{\mathrm{3}} }+{j}\frac{{wL}}{{R}_{\mathrm{3}} }=\frac{{R}_{\mathrm{2}} }{{R}_{\mathrm{4}} +\frac{\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }}\left({R}_{\mathrm{4}} +{j}\frac{\mathrm{1}}{{wC}}\right) \\ $$$${comparing}\:{real}\:{and}\:{imaginary}\:{part} \\ $$$$\frac{{wL}}{{R}_{\mathrm{3}} }=\frac{{R}_{\mathrm{2}} }{{R}_{\mathrm{4}} +\frac{\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }}\left(\frac{\mathrm{1}}{{wC}}\right) \\ $$$${L}=\frac{{R}_{\mathrm{3}} }{{w}}×\frac{\frac{{R}_{\mathrm{2}} }{{wC}}}{\frac{{R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} +\mathrm{1}}{{w}^{\mathrm{2}} {C}^{\mathrm{2}} }} \\ $$$${L}=\frac{{R}_{\mathrm{3}} }{{w}}×\frac{{R}_{\mathrm{2}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} }{{wC}\left({R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{R}_{\mathrm{2}} {R}_{\mathrm{3}} {C}}{\mathrm{1}+{R}_{\mathrm{4}} {w}^{\mathrm{2}} {C}^{\mathrm{2}} } \\ $$$$ \\ $$

Commented by Tawa1 last updated on 25/Dec/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

thank you...

$${thank}\:{you}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com