Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 134135 by Agnibhoo last updated on 28/Feb/21

If P = 2 + (1/P) then what is the answer of  P^2  − (1/P^2 ) ?

$$\mathrm{If}\:\mathrm{P}\:=\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{P}}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{of} \\ $$$$\mathrm{P}^{\mathrm{2}} \:−\:\frac{\mathrm{1}}{\mathrm{P}^{\mathrm{2}} }\:?\:\: \\ $$

Answered by Ñï= last updated on 28/Feb/21

p^2 −(1/p^2 )  =(p−(1/p))(p+(1/p))  =(p−(1/p))[(p−(1/p))^2 +4]^(1/2)   =2×(2^2 +4)^(1/2)   =4(√2)

$${p}^{\mathrm{2}} −\frac{\mathrm{1}}{{p}^{\mathrm{2}} } \\ $$$$=\left({p}−\frac{\mathrm{1}}{{p}}\right)\left({p}+\frac{\mathrm{1}}{{p}}\right) \\ $$$$=\left({p}−\frac{\mathrm{1}}{{p}}\right)\left[\left({p}−\frac{\mathrm{1}}{{p}}\right)^{\mathrm{2}} +\mathrm{4}\right]^{\mathrm{1}/\mathrm{2}} \\ $$$$=\mathrm{2}×\left(\mathrm{2}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}} \\ $$

Answered by bobhans last updated on 28/Feb/21

p−(1/p) = 2⇒ p^2 +(1/p^2 ) = 6  ⇒(p+(1/p))^2 −2 = 6 ⇒p+(1/p) = 2(√2)  then (p−(1/p))(p+(1/p))= 2×2(√2)  p^2 −(1/p^2 ) = 4(√2)

$${p}−\frac{\mathrm{1}}{{p}}\:=\:\mathrm{2}\Rightarrow\:{p}^{\mathrm{2}} +\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:=\:\mathrm{6} \\ $$$$\Rightarrow\left({p}+\frac{\mathrm{1}}{{p}}\right)^{\mathrm{2}} −\mathrm{2}\:=\:\mathrm{6}\:\Rightarrow{p}+\frac{\mathrm{1}}{{p}}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${then}\:\left({p}−\frac{\mathrm{1}}{{p}}\right)\left({p}+\frac{\mathrm{1}}{{p}}\right)=\:\mathrm{2}×\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} −\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:=\:\mathrm{4}\sqrt{\mathrm{2}}\: \\ $$

Answered by mr W last updated on 28/Feb/21

P−(1/P)=2  P^2 −2+(1/P^2 )=4  P^2 +2+(1/P^2 )=8  (P+(1/P))^2 =8  P+(1/P)=±2(√2)  P^2 −(1/P^2 )=(P+(1/P))(P−(1/P))=±4(√2)

$${P}−\frac{\mathrm{1}}{{P}}=\mathrm{2} \\ $$$${P}^{\mathrm{2}} −\mathrm{2}+\frac{\mathrm{1}}{{P}^{\mathrm{2}} }=\mathrm{4} \\ $$$${P}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{P}^{\mathrm{2}} }=\mathrm{8} \\ $$$$\left({P}+\frac{\mathrm{1}}{{P}}\right)^{\mathrm{2}} =\mathrm{8} \\ $$$${P}+\frac{\mathrm{1}}{{P}}=\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${P}^{\mathrm{2}} −\frac{\mathrm{1}}{{P}^{\mathrm{2}} }=\left({P}+\frac{\mathrm{1}}{{P}}\right)\left({P}−\frac{\mathrm{1}}{{P}}\right)=\pm\mathrm{4}\sqrt{\mathrm{2}} \\ $$

Answered by Rasheed.Sindhi last updated on 28/Feb/21

P = 2 + (1/P)⇒p^2 −2p−1=0  p=1±(√2)⇒p^2 =1+2±2(√2)=3±2(√2)  p^2 −(1/p^2 )=(3±2(√2))−(1/(3±2(√2))).((3∓2(√2))/(3∓2(√2)))  =3±2(√2)−((3∓2(√2))/(9−8))=3±2(√2)−3±2(√2)  =±4(√2)

$$\mathrm{P}\:=\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{P}}\Rightarrow\mathrm{p}^{\mathrm{2}} −\mathrm{2p}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{p}=\mathrm{1}\pm\sqrt{\mathrm{2}}\Rightarrow\mathrm{p}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}\pm\mathrm{2}\sqrt{\mathrm{2}}=\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{p}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} }=\left(\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}}}.\frac{\mathrm{3}\mp\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}\mp\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$=\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}}−\frac{\mathrm{3}\mp\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}−\mathrm{8}}=\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$=\pm\mathrm{4}\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com