Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 69734 by mhmd last updated on 27/Sep/19

If I_n = ∫_(0 ) ^(π/4) tan^n x dx, n ∈ N, then I_(n+2) +I_n =

$$\mathrm{If}\:{I}_{{n}} =\:\underset{\mathrm{0}\:} {\overset{\pi/\mathrm{4}} {\int}}\mathrm{tan}^{{n}} {x}\:{dx},\:{n}\:\in\:{N},\:\mathrm{then}\:{I}_{{n}+\mathrm{2}} +{I}_{{n}} = \\ $$

Commented by mathmax by abdo last updated on 16/Oct/19

I_(n+2) +I_n =∫_0 ^(π/4) (tan^(n+2) x+tan^n x)dx =∫_0 ^(π/4) tan^n x(1+tan^2 x)dx  =[(1/(n+1))tan^(n+1) x]_0 ^(π/4) =(1/(n+1))

$${I}_{{n}+\mathrm{2}} +{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left({tan}^{{n}+\mathrm{2}} {x}+{tan}^{{n}} {x}\right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{n}} {x}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{tan}^{{n}+\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com