Question Number 69734 by mhmd last updated on 27/Sep/19 | ||
$$\mathrm{If}\:{I}_{{n}} =\:\underset{\mathrm{0}\:} {\overset{\pi/\mathrm{4}} {\int}}\mathrm{tan}^{{n}} {x}\:{dx},\:{n}\:\in\:{N},\:\mathrm{then}\:{I}_{{n}+\mathrm{2}} +{I}_{{n}} = \\ $$ | ||
Commented by mathmax by abdo last updated on 16/Oct/19 | ||
$${I}_{{n}+\mathrm{2}} +{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left({tan}^{{n}+\mathrm{2}} {x}+{tan}^{{n}} {x}\right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{n}} {x}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{tan}^{{n}+\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$ | ||