Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 22082 by Tinkutara last updated on 10/Oct/17

If A is a fifty-element subset of the set  {1, 2, 3, ...., 100} such that no two  numbers from A add up to 100 show  that A contains a square.

$$\mathrm{If}\:{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{fifty}-\mathrm{element}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set} \\ $$$$\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:....,\:\mathrm{100}\right\}\:\mathrm{such}\:\mathrm{that}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{numbers}\:\mathrm{from}\:{A}\:\mathrm{add}\:\mathrm{up}\:\mathrm{to}\:\mathrm{100}\:\mathrm{show} \\ $$$$\mathrm{that}\:{A}\:\mathrm{contains}\:\mathrm{a}\:\mathrm{square}. \\ $$

Answered by Rasheed.Sindhi last updated on 14/Oct/17

The subset of {1,2,...,100},  (i)which doesn′t contain perfect       square  and  (ii)whose no two elements add          up to 100  has at most 49 elements and are  as follows. All the possible   sets having at most elements  are given here.(Note thatby   notation a∣b here is meant   ′one of a or b′):  {99^(1) ,2∣98^(2) ,3∣97^(3) ,96^(4) ,5∣95^(5) ,6∣94^(6) ,7∣93^(7) ,    8∣92^(8) ,91^(9) ,10∣90^(10) ,11∣89^(11) ,12∣88^(12) ,13∣87^(13)     14∣8^(14) ,15∣85^(15) ,84^(16) ,17∣83^(17) ,18∣82^(18) ,19^(19) ,    20∣80^(20) ,21∣79^(21) ,22∣78^(22) ,23∣77^(23) ,24∣76^(24) ,    75^(25) ,26∣74^(26) ,27∣73^(27) ,28∣72^(28) ,29∣71^(29) ,    30∣70^(30) ,31∣69^(31) ,32∣68^(32) ,33∣67^(33) ,34∣66^(34) ,    35∣65^(35) ,37∣63^(36) ,38∣62^(37) ,39∣61^(38) ,40∣60^(39) ,    41∣59^(40) ,42∣58^(41) ,43∣57^(42) ,44∣56^(43) ,45∣55^(44) ,    46∣54^(45) ,47∣53^(46) ,48∣52^(47) ,51^(48) ,50^(49) }  ∴ 50th number must be perfect  square.

$$\mathrm{The}\:\mathrm{subset}\:\mathrm{of}\:\left\{\mathrm{1},\mathrm{2},...,\mathrm{100}\right\}, \\ $$$$\left(\mathrm{i}\right)\mathrm{which}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{contain}\:\mathrm{perfect} \\ $$$$\:\:\:\:\:\mathrm{square} \\ $$$$\mathrm{and} \\ $$$$\left(\mathrm{ii}\right)\mathrm{whose}\:\mathrm{no}\:\mathrm{two}\:\mathrm{elements}\:\mathrm{add} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{up}\:\mathrm{to}\:\mathrm{100} \\ $$$$\mathrm{has}\:\mathrm{at}\:\mathrm{most}\:\mathrm{49}\:\mathrm{elements}\:\mathrm{and}\:\mathrm{are} \\ $$$$\mathrm{as}\:\mathrm{follows}.\:\mathrm{All}\:\mathrm{the}\:\mathrm{possible}\: \\ $$$$\mathrm{sets}\:\mathrm{having}\:\mathrm{at}\:\mathrm{most}\:\mathrm{elements} \\ $$$$\mathrm{are}\:\mathrm{given}\:\mathrm{here}.\left(\mathrm{Note}\:\mathrm{thatby}\:\right. \\ $$$$\mathrm{notation}\:\mathrm{a}\mid\mathrm{b}\:\mathrm{here}\:\mathrm{is}\:\mathrm{meant}\: \\ $$$$\left.'\mathrm{one}\:\mathrm{of}\:\mathrm{a}\:\mathrm{or}\:\mathrm{b}'\right): \\ $$$$\left\{\overset{\mathrm{1}} {\mathrm{99}}\overset{\mathrm{2}} {,\mathrm{2}\mid\mathrm{98}}\overset{\mathrm{3}} {,\mathrm{3}\mid\mathrm{97}},\overset{\mathrm{4}} {\mathrm{96}}\overset{\mathrm{5}} {,\mathrm{5}\mid\mathrm{95}}\overset{\mathrm{6}} {,\mathrm{6}\mid\mathrm{94}}\overset{\mathrm{7}} {,\mathrm{7}\mid\mathrm{93}},\right. \\ $$$$\:\overset{\mathrm{8}} {\:\mathrm{8}\mid\mathrm{92}},\overset{\mathrm{9}} {\mathrm{91}},\overset{\mathrm{10}} {\mathrm{10}\mid\mathrm{90}},\overset{\mathrm{11}} {\mathrm{11}\mid\mathrm{89}},\overset{\mathrm{12}} {\mathrm{12}\mid\mathrm{88}},\overset{\mathrm{13}} {\mathrm{13}\mid\mathrm{87}} \\ $$$$\:\:\overset{\mathrm{14}} {\mathrm{14}\mid\mathrm{8}},\overset{\mathrm{15}} {\mathrm{15}\mid\mathrm{85}},\overset{\mathrm{16}} {\mathrm{84}},\overset{\mathrm{17}} {\mathrm{17}\mid\mathrm{83}},\overset{\mathrm{18}} {\mathrm{18}\mid\mathrm{82}},\overset{\mathrm{19}} {\mathrm{19}}, \\ $$$$\:\:\overset{\mathrm{20}} {\mathrm{20}\mid\mathrm{80}},\overset{\mathrm{21}} {\mathrm{21}\mid\mathrm{79}},\overset{\mathrm{22}} {\mathrm{22}\mid\mathrm{78}},\overset{\mathrm{23}} {\mathrm{23}\mid\mathrm{77}},\overset{\mathrm{24}} {\mathrm{24}\mid\mathrm{76}}, \\ $$$$\:\:\overset{\mathrm{25}} {\mathrm{75}},\overset{\mathrm{26}} {\mathrm{26}\mid\mathrm{74}},\overset{\mathrm{27}} {\mathrm{27}\mid\mathrm{73}},\overset{\mathrm{28}} {\mathrm{28}\mid\mathrm{72}},\overset{\mathrm{29}} {\mathrm{29}\mid\mathrm{71}}, \\ $$$$\:\:\overset{\mathrm{30}} {\mathrm{30}\mid\mathrm{70}},\overset{\mathrm{31}} {\mathrm{31}\mid\mathrm{69}},\overset{\mathrm{32}} {\mathrm{32}\mid\mathrm{68}},\overset{\mathrm{33}} {\mathrm{33}\mid\mathrm{67}},\overset{\mathrm{34}} {\mathrm{34}\mid\mathrm{66}}, \\ $$$$\:\:\overset{\mathrm{35}} {\mathrm{35}\mid\mathrm{65}},\overset{\mathrm{36}} {\mathrm{37}\mid\mathrm{63}},\overset{\mathrm{37}} {\mathrm{38}\mid\mathrm{62}},\overset{\mathrm{38}} {\mathrm{39}\mid\mathrm{61}},\overset{\mathrm{39}} {\mathrm{40}\mid\mathrm{60}}, \\ $$$$\:\:\overset{\mathrm{40}} {\mathrm{41}\mid\mathrm{59}},\overset{\mathrm{41}} {\mathrm{42}\mid\mathrm{58}},\overset{\mathrm{42}} {\mathrm{43}\mid\mathrm{57}},\overset{\mathrm{43}} {\mathrm{44}\mid\mathrm{56}},\overset{\mathrm{44}} {\mathrm{45}\mid\mathrm{55}}, \\ $$$$\left.\:\:\overset{\mathrm{45}} {\mathrm{46}\mid\mathrm{54}},\overset{\mathrm{46}} {\mathrm{47}\mid\mathrm{53}},\overset{\mathrm{47}} {\mathrm{48}\mid\mathrm{52}},\overset{\mathrm{48}} {\mathrm{51}},\overset{\mathrm{49}} {\mathrm{50}}\right\} \\ $$$$\therefore\:\mathrm{50th}\:\mathrm{number}\:\mathrm{must}\:\mathrm{be}\:\mathrm{perfect} \\ $$$$\mathrm{square}. \\ $$

Commented by Tinkutara last updated on 14/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com