Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 137851 by liberty last updated on 07/Apr/21

If 2^(2sin^2 θ−3sin θ+1)  + 2^(2−2sin^2 θ+3sin θ)  = 9  find the value of sin θ+cos θ .

$${If}\:\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta+\mathrm{1}} \:+\:\mathrm{2}^{\mathrm{2}−\mathrm{2sin}\:^{\mathrm{2}} \theta+\mathrm{3sin}\:\theta} \:=\:\mathrm{9} \\ $$$${find}\:{the}\:{value}\:{of}\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:. \\ $$

Answered by bobhans last updated on 07/Apr/21

 consider 2^(2−2sin^2 θ+3sin θ))  =    4.2^(−2sin^2 θ+3sin θ)   and 2^(2sin^2 θ−3sin θ+1) =  2.2^(2sin^2 θ−3sin θ)   let 2^(2sin^2 θ−3sin θ  ) = b we get  (4/b) + 2b = 9 ; 2b^2 −9b+4 = 0  (2b−1)(b−4) = 0    { ((b=(1/2))),((b=4)) :}  case(1) b=(1/2) ⇒2^(2sin^2 θ−3sin θ)  = 2^(−1)   we get 2sin^2 θ−3sin θ+1=0  (2sin θ−1)(sin θ−1)=0    { ((sin θ=(1/2)∧cos θ=±((√3)/2) )),((sin θ=1 ∧cos θ=0 (no solution))) :}  case(2) b=4⇒2^(2sin^2 θ−3sin θ) =2^2   we get 2sin^2 θ−3sin θ−2=0  (2sin θ−1)(sin θ+2)=0  →sin θ=(1/2)   same to case(1)  then sin θ+cos θ =  ((1±(√3))/2)

$$\:{consider}\:\mathrm{2}^{\left.\mathrm{2}−\mathrm{2sin}\:^{\mathrm{2}} \theta+\mathrm{3sin}\:\theta\right)} \:=\: \\ $$$$\:\mathrm{4}.\mathrm{2}^{−\mathrm{2sin}\:^{\mathrm{2}} \theta+\mathrm{3sin}\:\theta} \:\:{and}\:\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta+\mathrm{1}} = \\ $$$$\mathrm{2}.\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta} \\ $$$${let}\:\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta\:\:} =\:{b}\:{we}\:{get} \\ $$$$\frac{\mathrm{4}}{{b}}\:+\:\mathrm{2}{b}\:=\:\mathrm{9}\:;\:\mathrm{2}{b}^{\mathrm{2}} −\mathrm{9}{b}+\mathrm{4}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}{b}−\mathrm{1}\right)\left({b}−\mathrm{4}\right)\:=\:\mathrm{0}\: \:\begin{cases}{{b}=\frac{\mathrm{1}}{\mathrm{2}}}\\{{b}=\mathrm{4}}\end{cases} \\ $$$${case}\left(\mathrm{1}\right)\:{b}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta} \:=\:\mathrm{2}^{−\mathrm{1}} \\ $$$${we}\:{get}\:\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)\left(\mathrm{sin}\:\theta−\mathrm{1}\right)=\mathrm{0}\: \\ $$$$\begin{cases}{\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}\wedge\mathrm{cos}\:\theta=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:}\\{\mathrm{sin}\:\theta=\mathrm{1}\:\wedge\mathrm{cos}\:\theta=\mathrm{0}\:\left({no}\:{solution}\right)}\end{cases} \\ $$$${case}\left(\mathrm{2}\right)\:{b}=\mathrm{4}\Rightarrow\mathrm{2}^{\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta} =\mathrm{2}^{\mathrm{2}} \\ $$$${we}\:{get}\:\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{3sin}\:\theta−\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)\left(\mathrm{sin}\:\theta+\mathrm{2}\right)=\mathrm{0} \\ $$$$\rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}\: \:{same}\:{to}\:{case}\left(\mathrm{1}\right) \\ $$$${then}\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:=\:\:\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com