Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 40523 by scientist last updated on 23/Jul/18

If (1+ax+bx^2 )(1−2x)^(18)   can be expanded using  binomial theorem in ascending power of x.Determine  the value of   a and b,if the coefficient of x^3   and x^(4 )   are both zero.

$${If}\:\left(\mathrm{1}+{ax}+{bx}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{18}} \:\:{can}\:{be}\:{expanded}\:{using} \\ $$$${binomial}\:{theorem}\:{in}\:{ascending}\:{power}\:{of}\:{x}.{Determine} \\ $$$${the}\:{value}\:{of}\:\:\:{a}\:{and}\:{b},{if}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} \:\:{and}\:{x}^{\mathrm{4}\:} \:\:{are}\:{both}\:{zero}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

(1+ax+bx^2 )(1−18C_1 .2x+18C_2 .4x^2 −18C_3 .8x^3    +18C_4 .16x^4 +...)  the term containing x^4     x^4 (18C_4 .16−a.18C_3 .8+b.18C_2 .4)  the term containing x^3   x^3 (−18C_3 .8+a.18C_2 .4−b.18C_1 .2)  if coefficient of x^3  and x^4  are zero then  a.18C_2 .4−b.18C_1 .2=18C_3 .16  ist eqn  a.18C_3 .8−b.18C_2 .4=18C_4 .16 2nd eqn  to solve ...  18C_1 =18   18C_2 =((18×17)/2)=153  18C_3 =((18×17×16)/(3×2))=((153×16)/3)=816  18C_4 =((18×17×16×15)/(4×3×2))=((816×15)/4)=3060  ist eqn  612a−36b=816×16  816×8a−153×4b=3060×16  its a big big number so solve pls...

$$\left(\mathrm{1}+{ax}+{bx}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}{x}+\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}{x}^{\mathrm{2}} −\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}{x}^{\mathrm{3}} \right. \\ $$$$\left.\:+\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}{x}^{\mathrm{4}} +...\right) \\ $$$${the}\:{term}\:{containing}\:{x}^{\mathrm{4}} \:\: \\ $$$${x}^{\mathrm{4}} \left(\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}−{a}.\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{b}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}\right) \\ $$$${the}\:{term}\:{containing}\:{x}^{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} \left(−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{a}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}−{b}.\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}\right) \\ $$$${if}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} \:{and}\:{x}^{\mathrm{4}} \:{are}\:{zero}\:{then} \\ $$$${a}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}−{b}.\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}=\mathrm{18}{C}_{\mathrm{3}} .\mathrm{16}\:\:{ist}\:{eqn} \\ $$$${a}.\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}−{b}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}=\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}\:\mathrm{2}{nd}\:{eqn} \\ $$$${to}\:{solve}\:... \\ $$$$\mathrm{18}{C}_{\mathrm{1}} =\mathrm{18}\:\:\:\mathrm{18}{C}_{\mathrm{2}} =\frac{\mathrm{18}×\mathrm{17}}{\mathrm{2}}=\mathrm{153} \\ $$$$\mathrm{18}{C}_{\mathrm{3}} =\frac{\mathrm{18}×\mathrm{17}×\mathrm{16}}{\mathrm{3}×\mathrm{2}}=\frac{\mathrm{153}×\mathrm{16}}{\mathrm{3}}=\mathrm{816} \\ $$$$\mathrm{18}{C}_{\mathrm{4}} =\frac{\mathrm{18}×\mathrm{17}×\mathrm{16}×\mathrm{15}}{\mathrm{4}×\mathrm{3}×\mathrm{2}}=\frac{\mathrm{816}×\mathrm{15}}{\mathrm{4}}=\mathrm{3060} \\ $$$${ist}\:{eqn} \\ $$$$\mathrm{612}{a}−\mathrm{36}{b}=\mathrm{816}×\mathrm{16} \\ $$$$\mathrm{816}×\mathrm{8}{a}−\mathrm{153}×\mathrm{4}{b}=\mathrm{3060}×\mathrm{16} \\ $$$${its}\:{a}\:{big}\:{big}\:{number}\:{so}\:{solve}\:{pls}... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

(1−18C_1 .2x+18C_2 .(2x)^2 −18C_3 .(2x)^3 +....)  terms containing  x^3    =−18C_3 (2x)^3 +ax.18C_2 .(2x)^2 +bx^2 .(−18C_1 (2x)  =x^3 {−18C_3 .8+a.4.18C_2 +b.−18C_3 .2 }  pls post complete question...

$$\left(\mathrm{1}−\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}{x}+\mathrm{18}{C}_{\mathrm{2}} .\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{18}{C}_{\mathrm{3}} .\left(\mathrm{2}{x}\right)^{\mathrm{3}} +....\right) \\ $$$${terms}\:{containing}\:\:{x}^{\mathrm{3}} \\ $$$$\:=−\mathrm{18}{C}_{\mathrm{3}} \left(\mathrm{2}{x}\right)^{\mathrm{3}} +{ax}.\mathrm{18}{C}_{\mathrm{2}} .\left(\mathrm{2}{x}\right)^{\mathrm{2}} +{bx}^{\mathrm{2}} .\left(−\mathrm{18}{C}_{\mathrm{1}} \left(\mathrm{2}{x}\right)\right. \\ $$$$={x}^{\mathrm{3}} \left\{−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{a}.\mathrm{4}.\mathrm{18}{C}_{\mathrm{2}} +{b}.−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{2}\:\right\} \\ $$$${pls}\:{post}\:{complete}\:{question}... \\ $$

Commented by MJS last updated on 23/Jul/18

also the constant factor of x^4  is zero, so just  continue!

$$\mathrm{also}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factor}\:\mathrm{of}\:{x}^{\mathrm{4}} \:\mathrm{is}\:\mathrm{zero},\:\mathrm{so}\:\mathrm{just} \\ $$$$\mathrm{continue}! \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

ok sir...

$${ok}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com