Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110779 by ZiYangLee last updated on 30/Aug/20

If 0≤x≤(π/2),  Prove that (2/π)x≤sin x≤x  without graphical method.

$$\mathrm{If}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}, \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\frac{\mathrm{2}}{\pi}{x}\leqslant\mathrm{sin}\:{x}\leqslant{x} \\ $$$$\mathrm{without}\:\mathrm{graphical}\:\mathrm{method}. \\ $$

Answered by Her_Majesty last updated on 30/Aug/20

f_1 (x)=((2x)/π)  f_1 ′(x)=(2/π)  f_2 (x)=sinx  f_2 ′(x)=cosx  f_3 (x)=x  f_3 ′(x)=1    0≤x≤(π/2):  f_1 (0)=f_2 (0)=f_3 (0)=0  ∧  f_1 ′(x)≤f_2 ′(x)≤f_3 ′(x)  ⇒  f_1 (x) stays ≤f_2 (x)  f_2 (x) stays ≤ f_3 (x)  within the given interval

$${f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{2}{x}}{\pi} \\ $$$${f}_{\mathrm{1}} '\left({x}\right)=\frac{\mathrm{2}}{\pi} \\ $$$${f}_{\mathrm{2}} \left({x}\right)={sinx} \\ $$$${f}_{\mathrm{2}} '\left({x}\right)={cosx} \\ $$$${f}_{\mathrm{3}} \left({x}\right)={x} \\ $$$${f}_{\mathrm{3}} '\left({x}\right)=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}: \\ $$$${f}_{\mathrm{1}} \left(\mathrm{0}\right)={f}_{\mathrm{2}} \left(\mathrm{0}\right)={f}_{\mathrm{3}} \left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\wedge \\ $$$${f}_{\mathrm{1}} '\left({x}\right)\leqslant{f}_{\mathrm{2}} '\left({x}\right)\leqslant{f}_{\mathrm{3}} '\left({x}\right) \\ $$$$\Rightarrow \\ $$$${f}_{\mathrm{1}} \left({x}\right)\:{stays}\:\leqslant{f}_{\mathrm{2}} \left({x}\right) \\ $$$${f}_{\mathrm{2}} \left({x}\right)\:{stays}\:\leqslant\:{f}_{\mathrm{3}} \left({x}\right) \\ $$$${within}\:{the}\:{given}\:{interval} \\ $$

Commented by ZiYangLee last updated on 31/Aug/20

Thanks!

$$\mathrm{Thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com