Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177134 by DAVONG last updated on 01/Oct/22

I=∫ln(1+2e^(−2x) )dx=?

$$\mathrm{I}=\int\mathrm{ln}\left(\mathrm{1}+\mathrm{2e}^{−\mathrm{2x}} \right)\mathrm{dx}=? \\ $$

Answered by Frix last updated on 02/Oct/22

∫ln (1+2e^(−2x) ) dx=^(t=−2e^(−2x) )   =(1/2)∫(−((ln (1−t))/t)dt=(1/2)Li_2  (t) =  =((Li_2  (−2e^(2x) ))/2)+C  with Li_n  (z) =Σ_(k=1) ^∞  (z^k /k^n )

$$\int\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2e}^{−\mathrm{2}{x}} \right)\:{dx}\overset{{t}=−\mathrm{2e}^{−\mathrm{2}{x}} } {=} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(−\frac{\mathrm{ln}\:\left(\mathrm{1}−{t}\right)}{{t}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Li}_{\mathrm{2}} \:\left({t}\right)\:=\right. \\ $$$$=\frac{\mathrm{Li}_{\mathrm{2}} \:\left(−\mathrm{2e}^{\mathrm{2}{x}} \right)}{\mathrm{2}}+{C} \\ $$$$\mathrm{with}\:\mathrm{Li}_{{n}} \:\left({z}\right)\:=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{z}^{{k}} }{{k}^{{n}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com