Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 4203 by Yozzii last updated on 01/Jan/16

I have no formal background in   number theory, but I′m curious  of how to find positive integer solutions   (x,y,z) to the equation x^n +y^n =z^n  for   n∈Z^− . Fermat′s last theorem led  me to this. Tell me about the cases  of n=−1,n=−2 and n=−3.

$${I}\:{have}\:{no}\:{formal}\:{background}\:{in}\: \\ $$$${number}\:{theory},\:{but}\:{I}'{m}\:{curious} \\ $$$${of}\:{how}\:{to}\:{find}\:{positive}\:{integer}\:{solutions}\: \\ $$$$\left({x},{y},{z}\right)\:{to}\:{the}\:{equation}\:{x}^{{n}} +{y}^{{n}} ={z}^{{n}} \:{for}\: \\ $$$${n}\in\mathbb{Z}^{−} .\:{Fermat}'{s}\:{last}\:{theorem}\:{led} \\ $$$${me}\:{to}\:{this}.\:{Tell}\:{me}\:{about}\:{the}\:{cases} \\ $$$${of}\:{n}=−\mathrm{1},{n}=−\mathrm{2}\:{and}\:{n}=−\mathrm{3}. \\ $$

Commented by 123456 last updated on 01/Jan/16

what if n∈Q?

$$\mathrm{what}\:\mathrm{if}\:{n}\in\mathbb{Q}? \\ $$

Commented by Rasheed Soomro last updated on 02/Jan/16

9^(1/2)  +16^(1/2) =49^(1/2)   64^(−1/2) +64^(−1/2) =16^(−1/2)

$$\mathrm{9}^{\mathrm{1}/\mathrm{2}} \:+\mathrm{16}^{\mathrm{1}/\mathrm{2}} =\mathrm{49}^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{64}^{−\mathrm{1}/\mathrm{2}} +\mathrm{64}^{−\mathrm{1}/\mathrm{2}} =\mathrm{16}^{−\mathrm{1}/\mathrm{2}} \\ $$

Answered by RasheedSindhi last updated on 01/Jan/16

Perhaps you are interesting in  general solution,not in individual   solutions!  I′ve attempt for individual ones.  x^(−1) +y^(−1) =z^(−1)   (1/x_ )+(1/y)=(1/z)⇒yz+xz=xy  z=((xy)/(x+y))  x=y=8  z=((64)/(16))=4  −−−−−−−−  x^(−2) +y^(−2) =z^(−2)   (1/x^2 )+(1/y^2 )=(1/z^2 )  y^2 z^2 +x^2 z^2 =x^2 y^2   z^2 =((x^2 y^2 )/(x^2 +y^2 ))  x=y=4,z=8

$${Perhaps}\:{you}\:{are}\:{interesting}\:{in} \\ $$$${general}\:{solution},{not}\:{in}\:{individual}\: \\ $$$${solutions}! \\ $$$${I}'{ve}\:{attempt}\:{for}\:{individual}\:{ones}. \\ $$$${x}^{−\mathrm{1}} +{y}^{−\mathrm{1}} ={z}^{−\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\underset{} {{x}}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{z}}\Rightarrow{yz}+{xz}={xy} \\ $$$${z}=\frac{{xy}}{{x}+{y}} \\ $$$${x}={y}=\mathrm{8} \\ $$$${z}=\frac{\mathrm{64}}{\mathrm{16}}=\mathrm{4} \\ $$$$−−−−−−−− \\ $$$${x}^{−\mathrm{2}} +{y}^{−\mathrm{2}} ={z}^{−\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{{z}^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} {z}^{\mathrm{2}} +{x}^{\mathrm{2}} {z}^{\mathrm{2}} ={x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${x}={y}=\mathrm{4},{z}=\mathrm{8} \\ $$

Commented by Yozzii last updated on 01/Jan/16

Yes, general solutions.

$${Yes},\:{general}\:{solutions}. \\ $$

Commented by Rasheed Soomro last updated on 01/Jan/16

One general solution for n=−1:  x=y=2^m ,z=2^(m−1)  ,∀m≥1∧ m∈ Z  Verification:  (2^m )^(−1) +(2^m )^(−1) =(2^(m−1) )^(−1)   2.2^(−m) =2^(−m+1)   2^(1−m) =2^(1−m)

$${One}\:{general}\:{solution}\:{for}\:{n}=−\mathrm{1}: \\ $$$${x}={y}=\mathrm{2}^{{m}} ,{z}=\mathrm{2}^{{m}−\mathrm{1}} \:,\forall{m}\geqslant\mathrm{1}\wedge\:{m}\in\:\mathbb{Z} \\ $$$${Verification}: \\ $$$$\left(\mathrm{2}^{{m}} \right)^{−\mathrm{1}} +\left(\mathrm{2}^{{m}} \right)^{−\mathrm{1}} =\left(\mathrm{2}^{{m}−\mathrm{1}} \right)^{−\mathrm{1}} \\ $$$$\mathrm{2}.\mathrm{2}^{−{m}} =\mathrm{2}^{−{m}+\mathrm{1}} \\ $$$$\mathrm{2}^{\mathrm{1}−{m}} =\mathrm{2}^{\mathrm{1}−{m}} \\ $$

Commented by Yozzii last updated on 01/Jan/16

How do you prove this answer?  If you guessed it, what led you  to this guess?

$${How}\:{do}\:{you}\:{prove}\:{this}\:{answer}? \\ $$$${If}\:{you}\:{guessed}\:{it},\:{what}\:{led}\:{you} \\ $$$${to}\:{this}\:{guess}?\: \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 01/Jan/16

x^(−1) +y^(−1) =z^(−1) ⇒z=((xy)/(x+y))  z will be integer in case x+y ∣ xy  Assuming special case x=y  z=(x^2 /(x+x))=(x^2 /(2x))=(x/2)  As z is integer so 2∣x⇒ x∈E  x=y=2k and z=k ,∀k∈N (More simpler condition)  Verification:  (2k)^(−1) +(2k)^(−1) =k^(−1)   2(2k)^(−1) =k^(−1)   (2.2^(−1) ).k^(−1) =k^−   k^(−1) =k^(−1)

$${x}^{−\mathrm{1}} +{y}^{−\mathrm{1}} ={z}^{−\mathrm{1}} \Rightarrow{z}=\frac{{xy}}{{x}+{y}} \\ $$$${z}\:{will}\:{be}\:{integer}\:{in}\:{case}\:{x}+{y}\:\mid\:{xy} \\ $$$${Assuming}\:{special}\:{case}\:{x}={y} \\ $$$${z}=\frac{{x}^{\mathrm{2}} }{{x}+{x}}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}}=\frac{{x}}{\mathrm{2}} \\ $$$${As}\:{z}\:{is}\:{integer}\:{so}\:\mathrm{2}\mid{x}\Rightarrow\:{x}\in\mathbb{E} \\ $$$${x}={y}=\mathrm{2}{k}\:{and}\:{z}={k}\:,\forall{k}\in\mathbb{N}\:\left(\boldsymbol{\mathrm{More}}\:\boldsymbol{\mathrm{simpler}}\:\boldsymbol{\mathrm{condition}}\right) \\ $$$${Verification}: \\ $$$$\left(\mathrm{2}{k}\right)^{−\mathrm{1}} +\left(\mathrm{2}{k}\right)^{−\mathrm{1}} ={k}^{−\mathrm{1}} \\ $$$$\mathrm{2}\left(\mathrm{2}{k}\right)^{−\mathrm{1}} ={k}^{−\mathrm{1}} \\ $$$$\left(\mathrm{2}.\mathrm{2}^{−\mathrm{1}} \right).{k}^{−\mathrm{1}} ={k}^{−} \\ $$$${k}^{−\mathrm{1}} ={k}^{−\mathrm{1}} \\ $$$$ \\ $$

Commented by Yozzii last updated on 01/Jan/16

Thank you.

$${Thank}\:{you}. \\ $$

Commented by Rasheed Soomro last updated on 01/Jan/16

Assuming special case  y=2x  z=((xy)/(x+y))⇒z=((x.2x)/(x+2x))=((2x^2 )/(3x))=((2x)/3)  z is integer ⇒3∣x  Hence Let x=3k  y=2(3k)=6k  z=((2x)/3)=((2(3k))/3)=2k  (x,y,z)=(3k,6k,2k)  Verification:  (3k)^(−1) +(6k)^(−1) =(2k)^(−1)   (1/(3k))+(1/(6k))=(1/(2k))⇒(1/3)+(1/6)=(1/2)  ⇒((2+1)/6)=(1/2)  ⇒(1/2)=(1/2)

$${Assuming}\:{special}\:{case} \\ $$$${y}=\mathrm{2}{x} \\ $$$${z}=\frac{{xy}}{{x}+{y}}\Rightarrow{z}=\frac{{x}.\mathrm{2}{x}}{{x}+\mathrm{2}{x}}=\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}{x}}=\frac{\mathrm{2}{x}}{\mathrm{3}} \\ $$$${z}\:{is}\:{integer}\:\Rightarrow\mathrm{3}\mid{x} \\ $$$${Hence}\:{Let}\:{x}=\mathrm{3}{k} \\ $$$${y}=\mathrm{2}\left(\mathrm{3}{k}\right)=\mathrm{6}{k} \\ $$$${z}=\frac{\mathrm{2}{x}}{\mathrm{3}}=\frac{\mathrm{2}\left(\mathrm{3}{k}\right)}{\mathrm{3}}=\mathrm{2}{k} \\ $$$$\left({x},{y},{z}\right)=\left(\mathrm{3}{k},\mathrm{6}{k},\mathrm{2}{k}\right) \\ $$$${Verification}: \\ $$$$\left(\mathrm{3}{k}\right)^{−\mathrm{1}} +\left(\mathrm{6}{k}\right)^{−\mathrm{1}} =\left(\mathrm{2}{k}\right)^{−\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}{k}}+\frac{\mathrm{1}}{\mathrm{6}{k}}=\frac{\mathrm{1}}{\mathrm{2}{k}}\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2}+\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 03/Jan/16

Assuming y=mx  z=((xy)/(x+y))=((x.mx)/(x+mx))=((mx^2 )/((1+m)x))=((mx)/(1+m))  z is integer ⇒ 1+m ∣ x  Let x=(1+m)k  y=m(1+m)k  z=((m(1+m)k)/(1+m))=mk  (x,y,z)=( m+1, m(m+1), m ) ∀ m∈Z^+

$${Assuming}\:{y}={mx} \\ $$$${z}=\frac{{xy}}{{x}+{y}}=\frac{{x}.{mx}}{{x}+{mx}}=\frac{{mx}^{\mathrm{2}} }{\left(\mathrm{1}+{m}\right){x}}=\frac{{mx}}{\mathrm{1}+{m}} \\ $$$${z}\:{is}\:{integer}\:\Rightarrow\:\mathrm{1}+{m}\:\mid\:{x} \\ $$$${Let}\:{x}=\left(\mathrm{1}+{m}\right){k} \\ $$$${y}={m}\left(\mathrm{1}+{m}\right){k} \\ $$$${z}=\frac{{m}\left(\mathrm{1}+{m}\right){k}}{\mathrm{1}+{m}}={mk} \\ $$$$\left({x},{y},{z}\right)=\left(\:{m}+\mathrm{1},\:{m}\left({m}+\mathrm{1}\right),\:{m}\:\right)\:\forall\:{m}\in\mathbb{Z}^{+} \\ $$

Commented by Rasheed Soomro last updated on 03/Jan/16

Assume y=(p/q)x,(p/q) is in reduced form  z=((xy)/(x+y))=((x((p/q)x))/(x+(p/q)x))=(((p/q)x^2 )/(((p+q)/q)x))=((px)/(p+q))  z is integer ⇒p+q ∣ x  Let x=(p+q)k  y=((p(p+q)k)/q)  z=(p/(p+q))×(p+q)k=pk  Now consider y=((p(p+q)k)/q)  y is integer ⇒q ∣ p  ∨  q ∣ p+q ∨ q ∣ k  Since (p,q)=1 so q ∤ p ∧ q ∤ p+q  Hence q ∣ k  Let k  is replaced by qk  x=(p+q)qk  y=p(p+q)k  z=pqk  Or  x=q(p+q)  y=p(p+q)  z=pq  Where p , q ∈N

$${Assume}\:{y}=\frac{{p}}{{q}}{x},\frac{{p}}{{q}}\:{is}\:{in}\:{reduced}\:{form} \\ $$$${z}=\frac{{xy}}{{x}+{y}}=\frac{{x}\left(\frac{{p}}{{q}}{x}\right)}{{x}+\frac{{p}}{{q}}{x}}=\frac{\frac{{p}}{{q}}{x}^{\mathrm{2}} }{\frac{{p}+{q}}{{q}}{x}}=\frac{{px}}{{p}+{q}} \\ $$$${z}\:{is}\:{integer}\:\Rightarrow{p}+{q}\:\mid\:{x} \\ $$$${Let}\:{x}=\left({p}+{q}\right){k} \\ $$$${y}=\frac{{p}\left({p}+{q}\right){k}}{{q}} \\ $$$${z}=\frac{{p}}{{p}+{q}}×\left({p}+{q}\right){k}={pk} \\ $$$${Now}\:{consider}\:{y}=\frac{{p}\left({p}+{q}\right){k}}{{q}} \\ $$$${y}\:{is}\:{integer}\:\Rightarrow{q}\:\mid\:{p}\:\:\vee\:\:{q}\:\mid\:{p}+{q}\:\vee\:{q}\:\mid\:{k} \\ $$$${Since}\:\left({p},{q}\right)=\mathrm{1}\:{so}\:{q}\:\nmid\:{p}\:\wedge\:{q}\:\nmid\:{p}+{q} \\ $$$${Hence}\:{q}\:\mid\:{k} \\ $$$${Let}\:{k}\:\:{is}\:{replaced}\:{by}\:{qk} \\ $$$${x}=\left({p}+{q}\right){qk} \\ $$$${y}={p}\left({p}+{q}\right){k} \\ $$$${z}={pqk} \\ $$$$\mathcal{O}{r} \\ $$$${x}={q}\left({p}+{q}\right) \\ $$$${y}={p}\left({p}+{q}\right) \\ $$$${z}={pq} \\ $$$${Where}\:{p}\:,\:{q}\:\in\mathbb{N}\:\:\: \\ $$

Answered by 123456 last updated on 02/Jan/16

i think we can use tha fermat theorem  to that  by fermat last theorem there no other  solution than the trivials one to  x^n +y^n =z^n ,n∈N,n>2  so by this there no other rational solution to  x^n +y^n =z^n   because if it was  x=(p_x /q_x ),y=(p_y /q_y ),z=(p_z /q_z )  x^n +y^n =z^n   (p_x ^n /q_x ^n )+(p_y ^n /q_y ^n )=(p_z ^n /q_z ^n )  (p_x q_y q_z )^n +(q_x p_y q_z )^n =(q_x q_y p_z )^n   a^n +b^n =c^n   and note that  x^(−n) =(1/x^n )=((1/x))^n =a^n  (rational solution)

$$\mathrm{i}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{tha}\:\mathrm{fermat}\:\mathrm{theorem} \\ $$$$\mathrm{to}\:\mathrm{that} \\ $$$$\mathrm{by}\:\mathrm{fermat}\:\mathrm{last}\:\mathrm{theorem}\:\mathrm{there}\:\mathrm{no}\:\mathrm{other} \\ $$$$\mathrm{solution}\:\mathrm{than}\:\mathrm{the}\:\mathrm{trivials}\:\mathrm{one}\:\mathrm{to} \\ $$$${x}^{{n}} +{y}^{{n}} ={z}^{{n}} ,{n}\in\mathbb{N},{n}>\mathrm{2} \\ $$$$\mathrm{so}\:\mathrm{by}\:\mathrm{this}\:\mathrm{there}\:\mathrm{no}\:\mathrm{other}\:\mathrm{rational}\:\mathrm{solution}\:\mathrm{to} \\ $$$${x}^{{n}} +{y}^{{n}} ={z}^{{n}} \\ $$$$\mathrm{because}\:\mathrm{if}\:\mathrm{it}\:\mathrm{was} \\ $$$${x}=\frac{{p}_{{x}} }{{q}_{{x}} },{y}=\frac{{p}_{{y}} }{{q}_{{y}} },{z}=\frac{{p}_{{z}} }{{q}_{{z}} } \\ $$$${x}^{{n}} +{y}^{{n}} ={z}^{{n}} \\ $$$$\frac{{p}_{{x}} ^{{n}} }{{q}_{{x}} ^{{n}} }+\frac{{p}_{{y}} ^{{n}} }{{q}_{{y}} ^{{n}} }=\frac{{p}_{{z}} ^{{n}} }{{q}_{{z}} ^{{n}} } \\ $$$$\left({p}_{{x}} {q}_{{y}} {q}_{{z}} \right)^{{n}} +\left({q}_{{x}} {p}_{{y}} {q}_{{z}} \right)^{{n}} =\left({q}_{{x}} {q}_{{y}} {p}_{{z}} \right)^{{n}} \\ $$$${a}^{{n}} +{b}^{{n}} ={c}^{{n}} \\ $$$$\mathrm{and}\:\mathrm{note}\:\mathrm{that} \\ $$$${x}^{−{n}} =\frac{\mathrm{1}}{{x}^{{n}} }=\left(\frac{\mathrm{1}}{{x}}\right)^{{n}} ={a}^{{n}} \:\left(\mathrm{rational}\:\mathrm{solution}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com