Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7168 by Tawakalitu. last updated on 14/Aug/16

I have five envelopes numbered 3,4,5,6,7 all hidden in a  box, i picked an envelope .  If its prime then i get the   square of that number in Naira. Otherwise (without   replacement) i picked another envelope and then get the  sum of the squares of the two numbers picked (in Naira)  what is the chance of me getting  N25  ?

$${I}\:{have}\:{five}\:{envelopes}\:{numbered}\:\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7}\:{all}\:{hidden}\:{in}\:{a} \\ $$$${box},\:{i}\:{picked}\:{an}\:{envelope}\:.\:\:{If}\:{its}\:{prime}\:{then}\:{i}\:{get}\:{the}\: \\ $$$${square}\:{of}\:{that}\:{number}\:{in}\:{Naira}.\:{Otherwise}\:\left({without}\:\right. \\ $$$$\left.{replacement}\right)\:{i}\:{picked}\:{another}\:{envelope}\:{and}\:{then}\:{get}\:{the} \\ $$$${sum}\:{of}\:{the}\:{squares}\:{of}\:{the}\:{two}\:{numbers}\:{picked}\:\left({in}\:{Naira}\right) \\ $$$${what}\:{is}\:{the}\:{chance}\:{of}\:{me}\:{getting}\:\:{N}\mathrm{25}\:\:? \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 14/Aug/16

Yes correct ..... Thank you so much.

$${Yes}\:{correct}\:.....\:{Thank}\:{you}\:{so}\:{much}. \\ $$

Commented by Rasheed Soomro last updated on 14/Aug/16

I can get N25  only in the following two cases:  (i) If I picked 5   [∵  5^2 =25]  (ii) I f  I picked 4 and 3 in succession[∵ 4^2 +3^2 =25]  In case (i) the chance of getting 5 is  (1/5)    In case (ii) picking 4 has chance (1/5) and after  picking 4, picking 3 has (1/4) probablity.  Therefore picking 4 and 3 in succession has  probablity (1/5)×(1/4)=(1/(20))    Probablity of (picking 5) or  (4 and 3 in succession)  will be (1/5)+(1/(20))=((4+1)/(20))=(5/(20))=(1/4)???

$${I}\:{can}\:{get}\:{N}\mathrm{25}\:\:{only}\:{in}\:{the}\:{following}\:{two}\:{cases}: \\ $$$$\left({i}\right)\:{If}\:{I}\:{picked}\:\mathrm{5}\:\:\:\left[\because\:\:\mathrm{5}^{\mathrm{2}} =\mathrm{25}\right] \\ $$$$\left({ii}\right)\:{I}\:{f}\:\:{I}\:{picked}\:\mathrm{4}\:{and}\:\mathrm{3}\:{in}\:{succession}\left[\because\:\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} =\mathrm{25}\right] \\ $$$${In}\:{case}\:\left({i}\right)\:{the}\:{chance}\:{of}\:{getting}\:\mathrm{5}\:{is}\:\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$ \\ $$$${In}\:{case}\:\left({ii}\right)\:{picking}\:\mathrm{4}\:{has}\:{chance}\:\frac{\mathrm{1}}{\mathrm{5}}\:{and}\:{after} \\ $$$${picking}\:\mathrm{4},\:{picking}\:\mathrm{3}\:{has}\:\frac{\mathrm{1}}{\mathrm{4}}\:{probablity}. \\ $$$${Therefore}\:{picking}\:\mathrm{4}\:{and}\:\mathrm{3}\:{in}\:{succession}\:{has} \\ $$$${probablity}\:\frac{\mathrm{1}}{\mathrm{5}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{20}} \\ $$$$ \\ $$$${Probablity}\:{of}\:\left({picking}\:\mathrm{5}\right)\:{or}\:\:\left(\mathrm{4}\:{and}\:\mathrm{3}\:{in}\:{succession}\right) \\ $$$${will}\:{be}\:\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{20}}=\frac{\mathrm{4}+\mathrm{1}}{\mathrm{20}}=\frac{\mathrm{5}}{\mathrm{20}}=\frac{\mathrm{1}}{\mathrm{4}}??? \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com