Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 1592 by Rasheed Soomro last updated on 23/Aug/15

I have a loop of string of length(perimeter)  p units.   I want to make a triangle of largest area from the  loop. What will be the dimensions of that triangle?

$$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\left(\mathrm{perimeter}\right)\:\:\mathrm{p}\:\mathrm{units}.\: \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{make}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{largest}\:\mathrm{area}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{loop}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\mathrm{that}\:\mathrm{triangle}? \\ $$

Commented by 123456 last updated on 23/Aug/15

x+y+z=p  s=p/2   { ((∣x−y∣≤z≤x+y)),((∣x−z∣≤y≤x+z)),((∣y−z∣≤x≤y+z)) :}  S(x,y,z)=(√(s(s−x)(s−y)(s−z)))

$${x}+{y}+{z}={p} \\ $$$${s}={p}/\mathrm{2} \\ $$$$\begin{cases}{\mid{x}−{y}\mid\leqslant{z}\leqslant{x}+{y}}\\{\mid{x}−{z}\mid\leqslant{y}\leqslant{x}+{z}}\\{\mid{y}−{z}\mid\leqslant{x}\leqslant{y}+{z}}\end{cases} \\ $$$$\mathrm{S}\left({x},{y},{z}\right)=\sqrt{{s}\left({s}−{x}\right)\left({s}−{y}\right)\left({s}−{z}\right)} \\ $$

Answered by prakash jain last updated on 10/Dec/15

x=y=z=(p/3)  among all triangle of same perimeter  equilateral triangle has largest area.

$${x}={y}={z}=\frac{{p}}{\mathrm{3}} \\ $$$$\mathrm{among}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{same}\:\mathrm{perimeter} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{largest}\:\mathrm{area}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com