Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210933 by mnjuly1970 last updated on 22/Aug/24

              I= ∫_0 ^( (π/2) ) (( sin( 25x ))/(sinx)) dx=?

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}\:} \frac{\:{sin}\left(\:\mathrm{25}{x}\:\right)}{{sinx}}\:{dx}=? \\ $$$$ \\ $$$$ \\ $$

Answered by Ghisom last updated on 22/Aug/24

((sin 25x)/(sin x))=(((e^(25ix) −e^(−25ix) )/(2i))/((e^(ix) −e^(−ix) )/(2i)))=  =1+Σ_(n=1) ^(12) (e^(2nxi) +e^(−2nxi) ) =  =1+2Σ_(n=1) ^(12)  cos 2nx  ⇒  ∫_0 ^(π/2)  ((sin 25x)/(sin x))dx=[x+Σ_(n=1) ^(12)  ((sin 2nx)/n)]_0 ^(π/2) =  =(π/2)

$$\frac{\mathrm{sin}\:\mathrm{25}{x}}{\mathrm{sin}\:{x}}=\frac{\frac{\mathrm{e}^{\mathrm{25i}{x}} −\mathrm{e}^{−\mathrm{25i}{x}} }{\mathrm{2i}}}{\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2i}}}= \\ $$$$=\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\mathrm{12}} {\sum}}\left(\mathrm{e}^{\mathrm{2}{nx}\mathrm{i}} +\mathrm{e}^{−\mathrm{2}{nx}\mathrm{i}} \right)\:= \\ $$$$=\mathrm{1}+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\mathrm{12}} {\sum}}\:\mathrm{cos}\:\mathrm{2}{nx} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{25}{x}}{\mathrm{sin}\:{x}}{dx}=\left[{x}+\underset{{n}=\mathrm{1}} {\overset{\mathrm{12}} {\sum}}\:\frac{\mathrm{sin}\:\mathrm{2}{nx}}{{n}}\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} = \\ $$$$=\frac{\pi}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 23/Aug/24

thanks alot sir .excellent

$${thanks}\:{alot}\:{sir}\:.{excellent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com