Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 62341 by Tawa1 last updated on 20/Jun/19

How many real root does the equation    x^8  − x^7  + 2x^6  − 2x^5  + 3x^4  − 3x^3  + 4x^2  − 4x + (5/2)  =  0       has

$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{root}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\mathrm{x}^{\mathrm{8}} \:−\:\mathrm{x}^{\mathrm{7}} \:+\:\mathrm{2x}^{\mathrm{6}} \:−\:\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\frac{\mathrm{5}}{\mathrm{2}}\:\:=\:\:\mathrm{0}\:\:\:\:\:\:\:\mathrm{has} \\ $$

Commented by Kunal12588 last updated on 20/Jun/19

Commented by Kunal12588 last updated on 20/Jun/19

zero real roots

$${zero}\:{real}\:{roots} \\ $$

Commented by Tawa1 last updated on 20/Jun/19

Can we show it without graph or full workings sir

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{show}\:\mathrm{it}\:\mathrm{without}\:\mathrm{graph}\:\mathrm{or}\:\mathrm{full}\:\mathrm{workings}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 20/Jun/19

f(x)= x^8  − x^7  + 2x^6  − 2x^5  + 3x^4  − 3x^3  + 4x^2  − 4x + (5/2)  =(x−1)x^7  + 2(x−1)x^5  + 3(x−1)x^3  + 4(x−1)x + (5/2)  =x(x−1)[x^6  + 2x^4  + 3x^2  + 4] + (5/2)  =x(x−1){[(x^2  +1)^2  +2]x^2  + 4} + (5/2)  ≥4x(x−1)+ (5/2)  =4[(x−(1/2))^3 −(1/4)]+ (5/2)  ≥4×(−(1/4))+ (5/2)  =(3/2)  since f(x)≥(3/2),  ⇒f(x)=0 has no real roots.

$${f}\left({x}\right)=\:\mathrm{x}^{\mathrm{8}} \:−\:\mathrm{x}^{\mathrm{7}} \:+\:\mathrm{2x}^{\mathrm{6}} \:−\:\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\left({x}−\mathrm{1}\right)\mathrm{x}^{\mathrm{7}} \:+\:\mathrm{2}\left({x}−\mathrm{1}\right)\mathrm{x}^{\mathrm{5}} \:+\:\mathrm{3}\left({x}−\mathrm{1}\right)\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{4}\left({x}−\mathrm{1}\right)\mathrm{x}\:+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$={x}\left({x}−\mathrm{1}\right)\left[\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{2x}^{\mathrm{4}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{4}\right]\:+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$={x}\left({x}−\mathrm{1}\right)\left\{\left[\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{2}\right]\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right\}\:+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\geqslant\mathrm{4}{x}\left({x}−\mathrm{1}\right)+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\mathrm{4}\left[\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{4}}\right]+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\geqslant\mathrm{4}×\left(−\frac{\mathrm{1}}{\mathrm{4}}\right)+\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${since}\:{f}\left({x}\right)\geqslant\frac{\mathrm{3}}{\mathrm{2}}, \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{has}\:{no}\:{real}\:{roots}. \\ $$

Commented by Tawa1 last updated on 21/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by MJS last updated on 20/Jun/19

x^7 (x−1)+2x^5 (x−1)+3x^3 (x−1)+4x(x−1)+(5/2)=0  x(x−1)(x^6 +2x^4 +3x^2 +4)+(5/2)=0    x(x−1)(x^6 +2x^4 +3x^2 +4)=0  x_1 =0  x_2 =1  g(x)=x^6 +2x^4 +3x^2 +4 obviously has got no real  zeros; its minimum is at  ((0),(4) ). h(x)=x(x−1) is  a parabola with minimum at  (((1/2)),((−(1/4))) )  we have to seek the minimum of  f(x)=x(x−1)(x^6 +2x^4 +3x^2 +4) with 0<x<1  f(.4)=−1.08847104  f(.5)=−1.22265625  f(.6)=−1.29260544  f(.7)=−1.27424829  f(.65)=−1.29673...  f(.64)=−1.29785...  f(.63)=−1.29796...  f(.62)=−1.29710...  ⇒ the minimum is close to  (((.63)),((−1.298)) )  ⇒ f(x)+(5/2) has its minimum close to   (((.63)),((1.202)) ) ⇒ it has no real zeros

$${x}^{\mathrm{7}} \left({x}−\mathrm{1}\right)+\mathrm{2}{x}^{\mathrm{5}} \left({x}−\mathrm{1}\right)+\mathrm{3}{x}^{\mathrm{3}} \left({x}−\mathrm{1}\right)+\mathrm{4}{x}\left({x}−\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}\right)+\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{0} \\ $$$$ \\ $$$${x}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0} \\ $$$${x}_{\mathrm{2}} =\mathrm{1} \\ $$$${g}\left({x}\right)={x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}\:\mathrm{obviously}\:\mathrm{has}\:\mathrm{got}\:\mathrm{no}\:\mathrm{real} \\ $$$$\mathrm{zeros};\:\mathrm{its}\:\mathrm{minimum}\:\mathrm{is}\:\mathrm{at}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{4}}\end{pmatrix}.\:{h}\left({x}\right)={x}\left({x}−\mathrm{1}\right)\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{minimum}\:\mathrm{at}\:\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}}\end{pmatrix} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{seek}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of} \\ $$$${f}\left({x}\right)={x}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${f}\left(.\mathrm{4}\right)=−\mathrm{1}.\mathrm{08847104} \\ $$$${f}\left(.\mathrm{5}\right)=−\mathrm{1}.\mathrm{22265625} \\ $$$${f}\left(.\mathrm{6}\right)=−\mathrm{1}.\mathrm{29260544} \\ $$$${f}\left(.\mathrm{7}\right)=−\mathrm{1}.\mathrm{27424829} \\ $$$${f}\left(.\mathrm{65}\right)=−\mathrm{1}.\mathrm{29673}... \\ $$$${f}\left(.\mathrm{64}\right)=−\mathrm{1}.\mathrm{29785}... \\ $$$${f}\left(.\mathrm{63}\right)=−\mathrm{1}.\mathrm{29796}... \\ $$$${f}\left(.\mathrm{62}\right)=−\mathrm{1}.\mathrm{29710}... \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{is}\:\mathrm{close}\:\mathrm{to}\:\begin{pmatrix}{.\mathrm{63}}\\{−\mathrm{1}.\mathrm{298}}\end{pmatrix} \\ $$$$\Rightarrow\:{f}\left({x}\right)+\frac{\mathrm{5}}{\mathrm{2}}\:\mathrm{has}\:\mathrm{its}\:\mathrm{minimum}\:\mathrm{close}\:\mathrm{to} \\ $$$$\begin{pmatrix}{.\mathrm{63}}\\{\mathrm{1}.\mathrm{202}}\end{pmatrix}\:\Rightarrow\:\mathrm{it}\:\mathrm{has}\:\mathrm{no}\:\mathrm{real}\:\mathrm{zeros} \\ $$

Commented by Tawa1 last updated on 21/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com