Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 139255 by bobhans last updated on 25/Apr/21

  How do you find a point on the curve y = x^2 that is closest to the point? (16, 1/2)

$$ \\ $$How do you find a point on the curve y = x^2 that is closest to the point? (16, 1/2)

Answered by john_santu last updated on 25/Apr/21

The tangent to parabola at its point  (r,r^2 ) has equation y=2rx−r^2   The normal for r≠0 will have  gradient m=−(1/(2r)) and it will have  equation y=−(x/(2r))+r^2 +(1/2)  such a line must passes through  at point (16,(1/2)) we get   (1/2)=−((16)/(2r))+r^2 +(1/2) that simplifies  to r^3 = 8 so r=2 and the point  of minimum distance is (2,4)

$${The}\:{tangent}\:{to}\:{parabola}\:{at}\:{its}\:{point} \\ $$$$\left({r},{r}^{\mathrm{2}} \right)\:{has}\:{equation}\:{y}=\mathrm{2}{rx}−{r}^{\mathrm{2}} \\ $$$${The}\:{normal}\:{for}\:{r}\neq\mathrm{0}\:{will}\:{have} \\ $$$${gradient}\:{m}=−\frac{\mathrm{1}}{\mathrm{2}{r}}\:{and}\:{it}\:{will}\:{have} \\ $$$${equation}\:{y}=−\frac{{x}}{\mathrm{2}{r}}+{r}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${such}\:{a}\:{line}\:{must}\:{passes}\:{through} \\ $$$${at}\:{point}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{we}\:{get}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{16}}{\mathrm{2}{r}}+{r}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\:{that}\:{simplifies} \\ $$$${to}\:{r}^{\mathrm{3}} =\:\mathrm{8}\:{so}\:{r}=\mathrm{2}\:{and}\:{the}\:{point} \\ $$$${of}\:{minimum}\:{distance}\:{is}\:\left(\mathrm{2},\mathrm{4}\right) \\ $$

Answered by mr W last updated on 25/Apr/21

distance from point (16,(1/2)) to point  (x,y) on the curve y=x^2  is d.  D=d^2 =(x−16)^2 +(y−(1/2))^2   D=(x−16)^2 +(x^2 −(1/2))^2   (dD/dx)=2(x−16)+2(x^2 −(1/2))(2x)=0  x^3 =8  x=2  y=2^2 =4  ⇒point (2,4) is closest to (16,(1/2)).

$${distance}\:{from}\:{point}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{to}\:{point} \\ $$$$\left({x},{y}\right)\:{on}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} \:{is}\:{d}. \\ $$$${D}={d}^{\mathrm{2}} =\left({x}−\mathrm{16}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${D}=\left({x}−\mathrm{16}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\frac{{dD}}{{dx}}=\mathrm{2}\left({x}−\mathrm{16}\right)+\mathrm{2}\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} =\mathrm{8} \\ $$$${x}=\mathrm{2} \\ $$$${y}=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$$\Rightarrow{point}\:\left(\mathrm{2},\mathrm{4}\right)\:{is}\:{closest}\:{to}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com