Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 67659 by Rio Michael last updated on 29/Aug/19

Help me obtain   the value of  e from   (1 + (1/n))^n   how do i go about it.

$${Help}\:{me}\:{obtain}\:\:\:{the}\:{value}\:{of}\:\:{e}\:{from} \\ $$$$\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:{how}\:{do}\:{i}\:{go}\:{about}\:{it}. \\ $$

Commented by Abdo msup. last updated on 30/Aug/19

A_n  =(1+(1/n))^n   and lim_(n→+∞)    A_n =e  A_n =Σ_(k=0) ^n  C_n ^k  (1/n^k ) =(C_n ^0 /n^0 ) +(C_n ^1 /n^1 ) +(C_n ^2 /n^2 ) +(C_n ^3 /n^3 ) +..+(C_n ^n /n^n ) ⇒  e =lim_(n→+∞)    A_n =1 +1 +(C_n ^2 /n^2 ) +(C_n ^3 /n^3 ) +....  =2 +((n(n−1))/(2n^2 )) +((n(n−1)(n−2))/(6n^3 )) +...  wd find e ∼ 2,7...

$${A}_{{n}} \:=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} ={e} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\frac{\mathrm{1}}{{n}^{{k}} }\:=\frac{{C}_{{n}} ^{\mathrm{0}} }{{n}^{\mathrm{0}} }\:+\frac{{C}_{{n}} ^{\mathrm{1}} }{{n}^{\mathrm{1}} }\:+\frac{{C}_{{n}} ^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:+\frac{{C}_{{n}} ^{\mathrm{3}} }{{n}^{\mathrm{3}} }\:+..+\frac{{C}_{{n}} ^{{n}} }{{n}^{{n}} }\:\Rightarrow \\ $$$${e}\:={lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} =\mathrm{1}\:+\mathrm{1}\:+\frac{{C}_{{n}} ^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:+\frac{{C}_{{n}} ^{\mathrm{3}} }{{n}^{\mathrm{3}} }\:+.... \\ $$$$=\mathrm{2}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} }\:+\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{6}{n}^{\mathrm{3}} }\:+... \\ $$$${wd}\:{find}\:{e}\:\sim\:\mathrm{2},\mathrm{7}... \\ $$

Commented by Rio Michael last updated on 30/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Commented by Abdo msup. last updated on 30/Aug/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com