Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 203321 by SonGoku last updated on 16/Jan/24

Help-me!     Observe points A, B and C below and find the widthof a lake according to the following data:     (AB)m; C^�  = 39°52′12′′  (BC − 257.5)m; A^�  = 97°7′56′′  (CA − 30)m; B^�  = 42°59′52′′  CA is the width of the lake      •^C                     •_A                                         •_B

$$\mathrm{Help}-\mathrm{me}! \\ $$$$\: \\ $$$$\mathrm{Observe}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{below}\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{widthof}\:\mathrm{a}\:\mathrm{lake}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following}\:\mathrm{data}: \\ $$$$\: \\ $$$$\left(\mathrm{AB}\right)\mathrm{m};\:\hat {\mathrm{C}}\:=\:\mathrm{39}°\mathrm{52}'\mathrm{12}'' \\ $$$$\left(\mathrm{BC}\:−\:\mathrm{257}.\mathrm{5}\right)\mathrm{m};\:\hat {\mathrm{A}}\:=\:\mathrm{97}°\mathrm{7}'\mathrm{56}'' \\ $$$$\left(\mathrm{CA}\:−\:\mathrm{30}\right)\mathrm{m};\:\hat {\mathrm{B}}\:=\:\mathrm{42}°\mathrm{59}'\mathrm{52}'' \\ $$$$\mathrm{CA}\:\mathrm{is}\:\mathrm{the}\:\mathrm{width}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lake}\: \\ $$$$\: \\ $$$$\bullet^{\mathrm{C}} \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\bullet_{\mathrm{A}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bullet_{\mathrm{B}} \\ $$

Answered by esmaeil last updated on 17/Jan/24

1^o =60^′ =3600^∥ →  C^∧ =39+(((52)/(60))+((12)/(3600)))=39.87^o   B^∧ =42+(((59)/(60))+((52)/(3600)))≈42.9978  ((AB)/(sinc))=((AC)/(sinB))→AB=((sin(39.87))/(sin(42.9987)))×30  =28.1993

$$\mathrm{1}^{{o}} =\mathrm{60}^{'} =\mathrm{3600}^{\shortparallel} \rightarrow \\ $$$$\overset{\wedge} {{C}}=\mathrm{39}+\left(\frac{\mathrm{52}}{\mathrm{60}}+\frac{\mathrm{12}}{\mathrm{3600}}\right)=\mathrm{39}.\mathrm{87}^{{o}} \\ $$$$\overset{\wedge} {{B}}=\mathrm{42}+\left(\frac{\mathrm{59}}{\mathrm{60}}+\frac{\mathrm{52}}{\mathrm{3600}}\right)\approx\mathrm{42}.\mathrm{9978} \\ $$$$\frac{{AB}}{{sinc}}=\frac{{AC}}{{sinB}}\rightarrow{AB}=\frac{{sin}\left(\mathrm{39}.\mathrm{87}\right)}{{sin}\left(\mathrm{42}.\mathrm{9987}\right)}×\mathrm{30} \\ $$$$=\mathrm{28}.\mathrm{1993} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com