Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 189057 by neinhaltsieger369 last updated on 11/Mar/23

    Help!      Evaluate  the  following  integral  usings  Green theorem:      ∮4xydx  +  x^2 dy      Where  C  is  the  square  of  vertices  (0,0), (0,2), (2,0)  and  (2,2).

$$\: \\ $$$$\:\mathrm{Help}! \\ $$$$\: \\ $$$$\:\mathrm{Evaluate}\:\:\mathrm{the}\:\:\mathrm{following}\:\:\mathrm{integral}\:\:\mathrm{usings}\:\:\mathrm{Green}\:\mathrm{theorem}: \\ $$$$\: \\ $$$$\:\oint\mathrm{4xy}{d}\mathrm{x}\:\:+\:\:\mathrm{x}^{\mathrm{2}} {d}\mathrm{y} \\ $$$$\: \\ $$$$\:\mathrm{Where}\:\:{C}\:\:\mathrm{is}\:\:\mathrm{the}\:\:\mathrm{square}\:\:\mathrm{of}\:\:\mathrm{vertices}\:\:\left(\mathrm{0},\mathrm{0}\right),\:\left(\mathrm{0},\mathrm{2}\right),\:\left(\mathrm{2},\mathrm{0}\right)\:\:\mathrm{and}\:\:\left(\mathrm{2},\mathrm{2}\right). \\ $$$$\: \\ $$

Commented by mr W last updated on 11/Mar/23

Nein!  Halt!  Sieger!

$${Nein}! \\ $$$${Halt}! \\ $$$${Sieger}! \\ $$

Commented by neinhaltsieger369 last updated on 11/Mar/23

Help!

$${Help}! \\ $$

Commented by mr W last updated on 11/Mar/23

I have expected that you′ll continue  with  Hilfe!

$${I}\:{have}\:{expected}\:{that}\:{you}'{ll}\:{continue} \\ $$$${with} \\ $$$$\boldsymbol{{Hilfe}}! \\ $$

Commented by Ar Brandon last updated on 11/Mar/23

��

Commented by Ar Brandon last updated on 11/Mar/23

To evaluate the given integral using Green's Theorem, we need to find the curl of the given vector field F = (4xy, x^2). So, ∂F₂/∂x = 2x and ∂F₁/∂y = 4x. Thus, curl(F) = ∂F₂/∂x - ∂F₁/∂y = -2x. Now, we can apply Green's Theorem which states that for a vector field F = (P, Q) and a simple closed curve C enclosing a region R, the line integral of F along C is equal to the double integral of curl(F) over the region R, i.e., ∮C (P dx + Q dy) = ∬R ( ∂Q/∂x - ∂P/∂y ) dA In our case, P = 4xy and Q = x^2, so we have: ∮C (4xy dx + x^2 dy) = ∬R (-2x) dA The region R enclosed by the curve C is a square with vertices (0,0), (0,2), (2,0) and (2,2). We can express the double integral over R as an iterated integral as follows: ∬R (-2x) dA = ∫[0,2] ∫[0,2] (-2x) dy dx Integrating with respect to y first, we get: ∫[0,2] (-2x) dy = -2xy ∣[0,2] = -4x Then, we integrate with respect to x: ∫[0,2] -4x dx = -2x^2 ∣[0,2] = -8 Therefore, the line integral of F along C is: ∮C (4xy dx + x^2 dy) = ∬R (-2x) dA = -8 Hence, the value of the given line integral using Green's Theorem is -8. <<Chat GPT>>

Commented by neinhaltsieger369 last updated on 12/Mar/23

 Thank  you

$$\:\mathrm{Thank}\:\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com