Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 104727 by bemath last updated on 23/Jul/20

Given x + (1/x) = 2cos θ  find x^n +(1/x^n ) = ?

$$\mathcal{G}{iven}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2cos}\:\theta \\ $$$${find}\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\:=\:? \\ $$

Commented by bemath last updated on 23/Jul/20

thank you all

$${thank}\:{you}\:{all} \\ $$

Answered by mr W last updated on 23/Jul/20

for x∈R  for x>0: 2≤x+(1/x)=2 cos θ≤2  ⇒x+(1/x)=2 ⇒x=1 ⇒x^n +(1/x^n )=2    for x<0: −2≥x+(1/x)=2 cos θ≥−2  ⇒x+(1/x)=−2 ⇒x=−1 ⇒x^n +(1/x^n )=(−1)^n 2

$${for}\:{x}\in\mathbb{R} \\ $$$${for}\:{x}>\mathrm{0}:\:\mathrm{2}\leqslant{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}\:\mathrm{cos}\:\theta\leqslant\mathrm{2} \\ $$$$\Rightarrow{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}\:\Rightarrow{x}=\mathrm{1}\:\Rightarrow{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2} \\ $$$$ \\ $$$${for}\:{x}<\mathrm{0}:\:−\mathrm{2}\geqslant{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}\:\mathrm{cos}\:\theta\geqslant−\mathrm{2} \\ $$$$\Rightarrow{x}+\frac{\mathrm{1}}{{x}}=−\mathrm{2}\:\Rightarrow{x}=−\mathrm{1}\:\Rightarrow{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\left(−\mathrm{1}\right)^{{n}} \mathrm{2} \\ $$

Commented by 1549442205PVT last updated on 23/Jul/20

Great Sir!

$$\mathrm{Great}\:\mathrm{Sir}! \\ $$

Answered by john santu last updated on 23/Jul/20

we solve the given equation   x^2 −2xcos θ +1 = 0 for x . Discriminat   Δ= 4cos^2 θ−4 = −4sin^2 θ  so the roots are cos θ ± i sin θ  By De Moivre′s formula  x^n  = cos (nθ) +i sin (nθ)  x^(−n)  = cos (−nθ)+i sin (−nθ)  and therefore   x^n  +x^(−n)  = {cos (nθ)+i sin (nθ)} +                         { cos (−nθ)+i sin (−nθ)}  x^n +(1/x^n ) = 2cos (nθ)   (JS ⊛ )

$${we}\:{solve}\:{the}\:{given}\:{equation}\: \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}\mathrm{cos}\:\theta\:+\mathrm{1}\:=\:\mathrm{0}\:{for}\:{x}\:.\:{Discriminat}\: \\ $$$$\Delta=\:\mathrm{4cos}\:^{\mathrm{2}} \theta−\mathrm{4}\:=\:−\mathrm{4sin}\:^{\mathrm{2}} \theta \\ $$$${so}\:{the}\:{roots}\:{are}\:\mathrm{cos}\:\theta\:\pm\:{i}\:\mathrm{sin}\:\theta \\ $$$${By}\:{De}\:{Moivre}'{s}\:{formula} \\ $$$${x}^{{n}} \:=\:\mathrm{cos}\:\left({n}\theta\right)\:+{i}\:\mathrm{sin}\:\left({n}\theta\right) \\ $$$${x}^{−{n}} \:=\:\mathrm{cos}\:\left(−{n}\theta\right)+{i}\:\mathrm{sin}\:\left(−{n}\theta\right) \\ $$$${and}\:{therefore}\: \\ $$$${x}^{{n}} \:+{x}^{−{n}} \:=\:\left\{\mathrm{cos}\:\left({n}\theta\right)+{i}\:\mathrm{sin}\:\left({n}\theta\right)\right\}\:+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{\:\mathrm{cos}\:\left(−{n}\theta\right)+{i}\:\mathrm{sin}\:\left(−{n}\theta\right)\right\} \\ $$$${x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\:=\:\mathrm{2cos}\:\left({n}\theta\right)\: \\ $$$$\left({JS}\:\circledast\:\right)\: \\ $$

Answered by Dwaipayan Shikari last updated on 23/Jul/20

x^2 −2xcosθ+1=0  x=((2cosθ+(√(4cos^2 θ−4)))/2)=cosθ+2isinθ  x^n =cosnθ+2isinnθ  (De moivre′s theorem)  (1/x^n )=cosnθ−2isinnθ  x^n +(1/x^n )=2cosnθ

$${x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}{cos}\theta+\sqrt{\mathrm{4}{cos}^{\mathrm{2}} \theta−\mathrm{4}}}{\mathrm{2}}={cos}\theta+\mathrm{2}{isin}\theta \\ $$$${x}^{{n}} ={cosn}\theta+\mathrm{2}{isinn}\theta\:\:\left({De}\:{moivre}'{s}\:{theorem}\right) \\ $$$$\frac{\mathrm{1}}{{x}^{{n}} }={cosn}\theta−\mathrm{2}{isinn}\theta \\ $$$${x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2}{cosn}\theta \\ $$

Answered by mathmax by abdo last updated on 24/Jul/20

x+(1/x) =2cosθ ⇒x^2  +1 =2xcosθ ⇒x^2  −2xcosθ +1 =0  Δ^′  =cos^2 θ−1 =−sin^2 θ =(isinθ)^2  ⇒z_1 =cosθ +isinθ =e^(iθ)  and  z_2 =cosθ −isinθ =e^(−iθ)   case 1 ) x =z_1  ⇒x^n  +(1/x^n ) =z_1 ^n  +(1/z_1 ^n )  = cos(nθ) +isin(nθ)+(1/(cos(nθ)+isin(nθ)))  =cos(nθ) +isin(nθ)+cos(nθ)−isin(nθ) =2cos(nθ)  case 2) x =z_2     ⇒x^(n )  +(1/x^n ) =2cos(nθ) because z_2 =z_1 ^− )

$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\:=\mathrm{2cos}\theta\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\:=\mathrm{2xcos}\theta\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:−\mathrm{2xcos}\theta\:+\mathrm{1}\:=\mathrm{0} \\ $$$$\Delta^{'} \:=\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{1}\:=−\mathrm{sin}^{\mathrm{2}} \theta\:=\left(\mathrm{isin}\theta\right)^{\mathrm{2}} \:\Rightarrow\mathrm{z}_{\mathrm{1}} =\mathrm{cos}\theta\:+\mathrm{isin}\theta\:=\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{and} \\ $$$$\mathrm{z}_{\mathrm{2}} =\mathrm{cos}\theta\:−\mathrm{isin}\theta\:=\mathrm{e}^{−\mathrm{i}\theta} \\ $$$$\left.\mathrm{case}\:\mathrm{1}\:\right)\:\mathrm{x}\:=\mathrm{z}_{\mathrm{1}} \:\Rightarrow\mathrm{x}^{\mathrm{n}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{n}} }\:=\mathrm{z}_{\mathrm{1}} ^{\mathrm{n}} \:+\frac{\mathrm{1}}{\mathrm{z}_{\mathrm{1}} ^{\mathrm{n}} }\:\:=\:\mathrm{cos}\left(\mathrm{n}\theta\right)\:+\mathrm{isin}\left(\mathrm{n}\theta\right)+\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{n}\theta\right)+\mathrm{isin}\left(\mathrm{n}\theta\right)} \\ $$$$=\mathrm{cos}\left(\mathrm{n}\theta\right)\:+\mathrm{isin}\left(\mathrm{n}\theta\right)+\mathrm{cos}\left(\mathrm{n}\theta\right)−\mathrm{isin}\left(\mathrm{n}\theta\right)\:=\mathrm{2cos}\left(\mathrm{n}\theta\right) \\ $$$$\left.\mathrm{c}\left.\mathrm{ase}\:\mathrm{2}\right)\:\mathrm{x}\:=\mathrm{z}_{\mathrm{2}} \:\:\:\:\Rightarrow\mathrm{x}^{\mathrm{n}\:} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{n}} }\:=\mathrm{2cos}\left(\mathrm{n}\theta\right)\:\mathrm{because}\:\mathrm{z}_{\mathrm{2}} =\overset{−} {\mathrm{z}}_{\mathrm{1}} \right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com