Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164478 by mathocean1 last updated on 17/Jan/22

Given  { ((u_0 =α ∈ C)),((u_(n+1) =((u_n +∣u_n ∣)/2))) :} ; n∈ N  where (u_n ) _(n∈N)  is a complex sequence.  Determinate the sequence (Im(u_n )) _(n∈N)   and calculate its limit.  NB: Im(u_n ) is the complex part of u_(n.)

$${Given}\:\begin{cases}{{u}_{\mathrm{0}} =\alpha\:\in\:\mathbb{C}}\\{{u}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} +\mid{u}_{{n}} \mid}{\mathrm{2}}}\end{cases}\:;\:{n}\in\:\mathbb{N} \\ $$$${where}\:\left({u}_{{n}} \right)\:_{{n}\in\mathbb{N}} \:{is}\:{a}\:{complex}\:{sequence}. \\ $$$${Determinate}\:{the}\:{sequence}\:\left({Im}\left({u}_{{n}} \right)\right)\:_{{n}\in\mathbb{N}} \\ $$$${and}\:{calculate}\:{its}\:{limit}. \\ $$$${NB}:\:{Im}\left({u}_{{n}} \right)\:{is}\:{the}\:{complex}\:{part}\:{of}\:{u}_{{n}.} \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 18/Jan/22

u_n =a_n +ib_n   u_0 =α=a_0 +ib_0   a_(n+1) +ib_(n+1) =((a_n +ib_n +∣a_n +ib_n ∣)/2)  a_(n+1) +ib_(n+1) =((a_n +(√(a_n ^2 +b_n ^2 )))/2)+((ib_n )/2)  im(u_(n+1) ):   b_(n+1) =(b_n /2)  ⇒^(n→n−1)     b_n =(b_(n−1) /2)  b_1 =(b_0 /2)  b_2 =(b_1 /2)=((b_0 /2)/2)=(b_0 /2^2 )  b_3 =(b_2 /2)=(b_0 /2^3 )  ...  b_n =(b_0 /2^n )=((im(α))/2^n )  lim_(n→∞) b_n  = lim_(n→∞) ((im(α))/2^n )=0                                 [∵ im(α) is constant]

$${u}_{{n}} ={a}_{{n}} +{ib}_{{n}} \\ $$$${u}_{\mathrm{0}} =\alpha={a}_{\mathrm{0}} +{ib}_{\mathrm{0}} \\ $$$${a}_{{n}+\mathrm{1}} +{ib}_{{n}+\mathrm{1}} =\frac{{a}_{{n}} +{ib}_{{n}} +\mid{a}_{{n}} +{ib}_{{n}} \mid}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} +{ib}_{{n}+\mathrm{1}} =\frac{{a}_{{n}} +\sqrt{{a}_{{n}} ^{\mathrm{2}} +{b}_{{n}} ^{\mathrm{2}} }}{\mathrm{2}}+\frac{{ib}_{{n}} }{\mathrm{2}} \\ $$$${im}\left({u}_{{n}+\mathrm{1}} \right):\:\:\:{b}_{{n}+\mathrm{1}} =\frac{{b}_{{n}} }{\mathrm{2}}\:\:\overset{{n}\rightarrow{n}−\mathrm{1}} {\Rightarrow}\:\:\:\:{b}_{{n}} =\frac{{b}_{{n}−\mathrm{1}} }{\mathrm{2}} \\ $$$${b}_{\mathrm{1}} =\frac{{b}_{\mathrm{0}} }{\mathrm{2}} \\ $$$${b}_{\mathrm{2}} =\frac{{b}_{\mathrm{1}} }{\mathrm{2}}=\frac{\frac{{b}_{\mathrm{0}} }{\mathrm{2}}}{\mathrm{2}}=\frac{{b}_{\mathrm{0}} }{\mathrm{2}^{\mathrm{2}} } \\ $$$${b}_{\mathrm{3}} =\frac{{b}_{\mathrm{2}} }{\mathrm{2}}=\frac{{b}_{\mathrm{0}} }{\mathrm{2}^{\mathrm{3}} } \\ $$$$... \\ $$$${b}_{{n}} =\frac{{b}_{\mathrm{0}} }{\mathrm{2}^{{n}} }=\frac{{im}\left(\alpha\right)}{\mathrm{2}^{{n}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{b}_{{n}} \:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{im}\left(\alpha\right)}{\mathrm{2}^{{n}} }=\mathrm{0}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\because\:{im}\left(\alpha\right)\:{is}\:{constant}\right] \\ $$

Commented by mathocean1 last updated on 19/Jan/22

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com