Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 97781 by Ar Brandon last updated on 09/Jun/20

Given the sequences (u_n )_(n∈N)  and (v_n )_(n∈N) defined  by u_n =Σ_(k=0) ^n (1/(k!)) and v_n =u_n +(1/(n(n!)))  a\ Show that (u_n )_n  is of Cauchy. Deduce that  (u_n )_n  converges.  b\ Show that (u_n )_n  and (v_n )_n  are adjacent  c\ Show that their common limit is not a rational  number.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{sequences}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{and}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \mathrm{defined} \\ $$$$\mathrm{by}\:\mathrm{u}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}!}\:\mathrm{and}\:\mathrm{v}_{\mathrm{n}} =\mathrm{u}_{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}!\right)} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{is}\:\mathrm{of}\:\mathrm{Cauchy}.\:\mathcal{D}\mathrm{educe}\:\mathrm{that} \\ $$$$\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{converges}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{and}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{are}\:\mathrm{adjacent} \\ $$$$\mathrm{c}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{their}\:\mathrm{common}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{rational} \\ $$$$\mathrm{number}. \\ $$

Answered by maths mind last updated on 10/Jun/20

for  ∀k≥2   k!≥k(k−1)  U_(n+m) −U_n =Σ_(k=1) ^m U_(k+n) ≤Σ_(k=1) ^m (1/((k+n)(k+n−1)))=Σ_(k=1) ^m ((1/(n+k−1))−(1/(n+k)))  =(1/m)−(1/(n+m))≤(1/m)....1  U_n  cauchy ⇔∀ε>0 ∃N ,∀n,m ≥N ∣U_n −U_m ∣<ε  we choose N=E((1/ε))+1⇒U_n −U_m ≤(1/m)≤(1/N)<ε  ....by1  U_n is cauchy since is reel sequence ⇒U_n   converge  b) U_(n+1) −U_n =(1/((n+1)!))>0  U_n   is ibcreasing  V_(n+1) −V_n =(1/((n+1)!))+(1/((n+1)(n+1)!))−(1/(n.n!))  ((n+2−(n+1)(n+1))/((n+1)(n+1)!))=((−n^2 −n+1)/((n+1)(n+1)!))<0,∀n≥1 V_n  decreasing  U_n −V_n =(1/(nn!))→0  U_n ,Vn are adjacente  if x=(a/b)= lim U_n ∈IQ    Σ_(n=0) ^(+∞) (1/(n!))=(a/b)=((a(b−1)!)/(b!))=Σ_(k≥0) (1/(k!))  ⇔a(b−1)!=b!.(Σ_(k=0) ^b (1/(k!)))+(1/(b+1))+Σ_(k≥2) ((b!)/((b+k)!))  k≥2⇒((b!)/((b+k)!))≤(1/((b+k)(b+k−1)))  ⇒Σ_(k≥2) ((b!)/((b+k)!))≤Σ_(k≥2) ((1/((b+k)(b+k−1))))=(1/(b+1))  ⇒∣a(b−1)!−b!.Σ_(k=0) ^b (1/(k!))∣≤(2/(b+1))<1  if b≥2....E  but a(b−1)! ∈N and b!.Σ_(k=0) ^b (1/(k!))∈N  ⇒∣a(b−1)!−b!.Σ_(k=0) ^b (1/(k!))∣∈N⇒Eabsurd  ⇒x∉Q

$${for}\:\:\forall{k}\geqslant\mathrm{2}\:\:\:{k}!\geqslant{k}\left({k}−\mathrm{1}\right) \\ $$$${U}_{{n}+{m}} −{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{U}_{{k}+{n}} \leqslant\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{\left({k}+{n}\right)\left({k}+{n}−\mathrm{1}\right)}=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\left(\frac{\mathrm{1}}{{n}+{k}−\mathrm{1}}−\frac{\mathrm{1}}{{n}+{k}}\right) \\ $$$$=\frac{\mathrm{1}}{{m}}−\frac{\mathrm{1}}{{n}+{m}}\leqslant\frac{\mathrm{1}}{{m}}....\mathrm{1} \\ $$$${U}_{{n}} \:{cauchy}\:\Leftrightarrow\forall\epsilon>\mathrm{0}\:\exists{N}\:,\forall{n},{m}\:\geqslant{N}\:\mid{U}_{{n}} −{U}_{{m}} \mid<\epsilon \\ $$$${we}\:{choose}\:{N}={E}\left(\frac{\mathrm{1}}{\epsilon}\right)+\mathrm{1}\Rightarrow{U}_{{n}} −{U}_{{m}} \leqslant\frac{\mathrm{1}}{{m}}\leqslant\frac{\mathrm{1}}{{N}}<\epsilon\:\:....{by}\mathrm{1} \\ $$$${U}_{{n}} {is}\:{cauchy}\:{since}\:{is}\:{reel}\:{sequence}\:\Rightarrow{U}_{{n}} \:\:{converge} \\ $$$$\left.{b}\right)\:{U}_{{n}+\mathrm{1}} −{U}_{{n}} =\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}>\mathrm{0}\:\:{U}_{{n}} \:\:{is}\:{ibcreasing} \\ $$$${V}_{{n}+\mathrm{1}} −{V}_{{n}} =\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)!}−\frac{\mathrm{1}}{{n}.{n}!} \\ $$$$\frac{{n}+\mathrm{2}−\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)!}=\frac{−{n}^{\mathrm{2}} −{n}+\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)!}<\mathrm{0},\forall{n}\geqslant\mathrm{1}\:{V}_{{n}} \:{decreasing} \\ $$$${U}_{{n}} −{V}_{{n}} =\frac{\mathrm{1}}{{nn}!}\rightarrow\mathrm{0}\:\:{U}_{{n}} ,{Vn}\:{are}\:{adjacente} \\ $$$${if}\:{x}=\frac{{a}}{{b}}=\:{lim}\:{U}_{{n}} \in\mathbb{IQ}\:\: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}!}=\frac{{a}}{{b}}=\frac{{a}\left({b}−\mathrm{1}\right)!}{{b}!}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{k}!} \\ $$$$\Leftrightarrow{a}\left({b}−\mathrm{1}\right)!={b}!.\left(\underset{{k}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{k}!}\right)+\frac{\mathrm{1}}{{b}+\mathrm{1}}+\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{{b}!}{\left({b}+{k}\right)!} \\ $$$${k}\geqslant\mathrm{2}\Rightarrow\frac{{b}!}{\left({b}+{k}\right)!}\leqslant\frac{\mathrm{1}}{\left({b}+{k}\right)\left({b}+{k}−\mathrm{1}\right)} \\ $$$$\Rightarrow\underset{{k}\geqslant\mathrm{2}} {\sum}\frac{{b}!}{\left({b}+{k}\right)!}\leqslant\underset{{k}\geqslant\mathrm{2}} {\sum}\left(\frac{\mathrm{1}}{\left({b}+{k}\right)\left({b}+{k}−\mathrm{1}\right)}\right)=\frac{\mathrm{1}}{{b}+\mathrm{1}} \\ $$$$\Rightarrow\mid{a}\left({b}−\mathrm{1}\right)!−{b}!.\underset{{k}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{k}!}\mid\leqslant\frac{\mathrm{2}}{{b}+\mathrm{1}}<\mathrm{1}\:\:{if}\:{b}\geqslant\mathrm{2}....{E} \\ $$$${but}\:{a}\left({b}−\mathrm{1}\right)!\:\in\mathbb{N}\:{and}\:{b}!.\underset{{k}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{k}!}\in\mathbb{N} \\ $$$$\Rightarrow\mid{a}\left({b}−\mathrm{1}\right)!−{b}!.\underset{{k}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{k}!}\mid\in\mathbb{N}\Rightarrow{Eabsurd} \\ $$$$\Rightarrow{x}\notin\mathbb{Q} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 10/Jun/20

Thanks for your method,

$$\mathcal{T}\mathrm{hanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{method}, \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com