Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 37661 by Rio Mike last updated on 16/Jun/18

Given the lines   l_1 : r= −5i + 2j + s(3i−j)  l_2 : r= −2i+j + t(2i+j)  Find the cosine of the angle  between l_1  and l_2 .

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{lines}\: \\ $$$${l}_{\mathrm{1}} :\:\mathrm{r}=\:−\mathrm{5}{i}\:+\:\mathrm{2}{j}\:+\:{s}\left(\mathrm{3}{i}−{j}\right) \\ $$$${l}_{\mathrm{2}} :\:{r}=\:−\mathrm{2}{i}+{j}\:+\:{t}\left(\mathrm{2}{i}+{j}\right) \\ $$$${F}\mathrm{ind}\:\mathrm{the}\:\mathrm{cosine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{between}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} . \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jun/18

ix+yj+5i−2j=s(3i−j)  i(x+5)+j(y−2)=3si−sj  ((x+5)/3)=((y−2)/(−1))  ix+jy=−2i+j+t(2i+j)  i(x+2)+j(y−1)=2ti+tj  ((x+2)/2)=((y−1)/1)  cosθ=((3×2−1×1)/(√(3^2 +(−1)^2 ×(√(2^2 +1^2 )))))  cosθ=(5/((√(10)) ×(√5)))=((√5)/((√5) ×(√2)))=(1/((√2) ))=cos(Π/4)  θ=(Π/4)

$${ix}+{yj}+\mathrm{5}{i}−\mathrm{2}{j}={s}\left(\mathrm{3}{i}−{j}\right) \\ $$$${i}\left({x}+\mathrm{5}\right)+{j}\left({y}−\mathrm{2}\right)=\mathrm{3}{si}−{sj} \\ $$$$\frac{{x}+\mathrm{5}}{\mathrm{3}}=\frac{{y}−\mathrm{2}}{−\mathrm{1}} \\ $$$${ix}+{jy}=−\mathrm{2}{i}+{j}+{t}\left(\mathrm{2}{i}+{j}\right) \\ $$$${i}\left({x}+\mathrm{2}\right)+{j}\left({y}−\mathrm{1}\right)=\mathrm{2}{ti}+{tj} \\ $$$$\frac{{x}+\mathrm{2}}{\mathrm{2}}=\frac{{y}−\mathrm{1}}{\mathrm{1}} \\ $$$${cos}\theta=\frac{\mathrm{3}×\mathrm{2}−\mathrm{1}×\mathrm{1}}{\sqrt{\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} ×\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }}} \\ $$$${cos}\theta=\frac{\mathrm{5}}{\sqrt{\mathrm{10}}\:×\sqrt{\mathrm{5}}}=\frac{\sqrt{\mathrm{5}}}{\sqrt{\mathrm{5}}\:×\sqrt{\mathrm{2}}}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}={cos}\frac{\Pi}{\mathrm{4}} \\ $$$$\theta=\frac{\Pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com