Question Number 107454 by Rio Michael last updated on 10/Aug/20 | ||
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:=\:\frac{{x}\:+\:\mathrm{3}}{{x}−\mathrm{2}}\:\mathrm{and}\:\mathrm{g}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}{xe}^{{x}} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Define}\:\mathrm{the}\:\mathrm{monotony}\:\mathrm{of}\:\mathrm{g}\:\mathrm{and}\:\mathrm{if}\:\mathrm{possible}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{variation} \\ $$$$\mathrm{table}\:\mathrm{for}\:\mathrm{g}\left({x}\right). \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Sketch}\:\mathrm{the}\:\mathrm{function}\:\mathrm{g}\left({x}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{determine}\:\mathrm{if}\:{f}\:\mathrm{and}\:\mathrm{g}\:\mathrm{intersect}. \\ $$ | ||
Answered by abdomsup last updated on 11/Aug/20 | ||
$${f}\left({x}\right)=\frac{{x}+\mathrm{3}}{{x}−\mathrm{2}}\:=\frac{{x}−\mathrm{2}+\mathrm{5}}{{x}−\mathrm{2}}\:=\mathrm{1}+\frac{\mathrm{5}}{{x}−\mathrm{2}} \\ $$$$\Rightarrow{f}\left({x}\right)−\mathrm{1}\:=\frac{\mathrm{5}}{{x}−\mathrm{2}}\:{let}\:{w}\left(\mathrm{2},\mathrm{1}\right) \\ $$$${let}\:{provethat}\:{f}\left(\mathrm{4}−{x}\right)\:=\mathrm{2}−{f}\left({x}\right) \\ $$$$\left({f}\left(\mathrm{2}{a}−{x}\right)=\mathrm{2}{b}−{f}\left({x}\right)\right) \\ $$$${f}\left(\mathrm{4}−{x}\right)=\frac{\mathrm{4}−{x}+\mathrm{3}}{\mathrm{4}−{x}−\mathrm{2}}\:=\frac{\mathrm{7}−{x}}{\mathrm{2}−{x}}=\frac{{x}−\mathrm{7}}{{x}−\mathrm{2}} \\ $$$$\mathrm{2}−{f}\left({x}\right)=\mathrm{2}−\frac{{x}+\mathrm{3}}{{x}−\mathrm{2}}\:=\frac{\mathrm{2}{x}−\mathrm{4}−{x}−\mathrm{3}}{{x}−\mathrm{2}} \\ $$$$=\frac{{x}−\mathrm{7}}{{x}−\mathrm{2}}\:\Rightarrow{f}\left(\mathrm{4}−{x}\right)=\mathrm{2}−{f}\left({x}\right)\:\Rightarrow \\ $$$${w}\left(\mathrm{2},\mathrm{1}\right)\:{is}\:{a}\:{centre}\:{of}\:{symetry} \\ $$$$ \\ $$ | ||
Commented by Rio Michael last updated on 11/Aug/20 | ||
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}. \\ $$ | ||
Answered by abdomsup last updated on 11/Aug/20 | ||
$$\left.\mathrm{2}\right){g}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{x}\:{e}^{{x}} \\ $$$${lim}_{{x}\rightarrow−\infty} {g}\left({x}\right)=\mathrm{0} \\ $$$${lim}_{{x}\rightarrow+\infty} {g}\left({x}\right)=+\infty \\ $$$${g}^{'} \left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \:+\frac{\mathrm{1}}{\mathrm{2}}{xe}^{{x}} =\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right){e}^{{x}} \\ $$$${g}^{'} \left({x}\right)\geqslant\mathrm{0}\:\Rightarrow{x}\geqslant−\mathrm{1}\:\:{vsruation} \\ $$$${x}\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${g}^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${g}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:{decr}\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}{e}}\:\:\:{incr}\:\:\:\:\:+\infty \\ $$$$ \\ $$ | ||