Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 132076 by liberty last updated on 11/Feb/21

Given the function f(x)=∫_0 ^( x) (1+t^3 )^(−1/2) dt.  If h(x) is the inverse of f(x) and h′(x)  is derivative of h(x). Find the   value of ((h′′(x))/((h(x))^2 )) .

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} {dt}. \\ $$$$\mathrm{If}\:\mathrm{h}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{and}\:\mathrm{h}'\left({x}\right) \\ $$$$\mathrm{is}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{h}\left({x}\right).\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{h}''\left({x}\right)}{\left(\mathrm{h}\left(\mathrm{x}\right)\right)^{\mathrm{2}} }\:. \\ $$$$ \\ $$

Answered by EDWIN88 last updated on 11/Feb/21

We have f(x)=∫_0 ^( x) (1+t^3 )^(−1/2)  dt , then   f(g(x))= ∫_0 ^(g(x)) (1+t^3 )^(−1/2)  dt   x = ∫_0 ^( g(x)) (1+t^3 )^(−1/2)  dt    differentiating both sides    1 = (1+(g(x)^3 )^(−1/2) g′(x) squaring both sides  1=(1+g(x)^3 )^(−1) (g′(x))^2 ⇒(g′(x))^2 =1+g(x)^3   differentiating again   2g′(x).g′′(x)=3g(x)^2 .g′(x)⇒g′′(x)=(3/2)(g(x))^2   thus we find ((g′′(x))/(g^2 (x))) = (3/2)

$$\mathrm{We}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\:\mathrm{x}} \left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} \:\mathrm{dt}\:,\:\mathrm{then} \\ $$$$\:\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}\right)\right)=\:\int_{\mathrm{0}} ^{\mathrm{g}\left(\mathrm{x}\right)} \left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} \:\mathrm{dt} \\ $$$$\:\mathrm{x}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{g}\left(\mathrm{x}\right)} \left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} \:\mathrm{dt}\: \\ $$$$\:\mathrm{differentiating}\:\mathrm{both}\:\mathrm{sides}\: \\ $$$$\:\mathrm{1}\:=\:\left(\mathrm{1}+\left(\mathrm{g}\left(\mathrm{x}\right)^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} \mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{squaring}\:\mathrm{both}\:\mathrm{sides}\right. \\ $$$$\mathrm{1}=\left(\mathrm{1}+\mathrm{g}\left(\mathrm{x}\right)^{\mathrm{3}} \right)^{−\mathrm{1}} \left(\mathrm{g}'\left(\mathrm{x}\right)\right)^{\mathrm{2}} \Rightarrow\left(\mathrm{g}'\left(\mathrm{x}\right)\right)^{\mathrm{2}} =\mathrm{1}+\mathrm{g}\left(\mathrm{x}\right)^{\mathrm{3}} \\ $$$$\mathrm{differentiating}\:\mathrm{again}\: \\ $$$$\mathrm{2g}'\left(\mathrm{x}\right).\mathrm{g}''\left(\mathrm{x}\right)=\mathrm{3g}\left(\mathrm{x}\right)^{\mathrm{2}} .\mathrm{g}'\left(\mathrm{x}\right)\Rightarrow\mathrm{g}''\left(\mathrm{x}\right)=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{g}\left(\mathrm{x}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{thus}\:\mathrm{we}\:\mathrm{find}\:\frac{\mathrm{g}''\left(\mathrm{x}\right)}{\mathrm{g}^{\mathrm{2}} \left(\mathrm{x}\right)}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com