Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 110181 by Rio Michael last updated on 27/Aug/20

Given the equation of two circles  C_1 : x^2  + y^2  −6x−4y + 9 = 0 andC_2  : x^2  +y^2 −2x−6y + 9 =0  find the equation of the common tangent to both circles.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{two}\:\mathrm{circles} \\ $$$${C}_{\mathrm{1}} :\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{6}{x}−\mathrm{4}{y}\:+\:\mathrm{9}\:=\:\mathrm{0}\:\mathrm{and}{C}_{\mathrm{2}} \::\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{6}{y}\:+\:\mathrm{9}\:=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{both}\:\mathrm{circles}. \\ $$

Commented by bemath last updated on 27/Aug/20

Commented by bemath last updated on 27/Aug/20

centre point C_1 (3,2), radius =r_1 = 2  centre point C_2 (1,3), radius=r_2 =1  say the common tangent line to both circle y=mx+n  or mx−y+n=0  (1) 2= ∣((3m−2+n)/( (√(13))))∣⇒2(√(13)) =∣3m+n−2∣  3m+n = 2±2(√(13)) ...(1)  (2) 1=∣((m−3+n)/( (√(10))))∣ ⇒(√(10)) =∣m+n−3∣  m+n = 3±(√(10)) ...(2)  (1)−(2)→2m = −1±2(√(13))∓(√(10))    m = −(1/2)±(√(13))∓((√(10))/2)    n= (7/2)±(√(10))∓(√(13))±((√(10))/2)

$${centre}\:{point}\:{C}_{\mathrm{1}} \left(\mathrm{3},\mathrm{2}\right),\:{radius}\:={r}_{\mathrm{1}} =\:\mathrm{2} \\ $$$${centre}\:{point}\:{C}_{\mathrm{2}} \left(\mathrm{1},\mathrm{3}\right),\:{radius}={r}_{\mathrm{2}} =\mathrm{1} \\ $$$${say}\:{the}\:{common}\:{tangent}\:{line}\:{to}\:{both}\:{circle}\:{y}={mx}+{n} \\ $$$${or}\:{mx}−{y}+{n}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}=\:\mid\frac{\mathrm{3}{m}−\mathrm{2}+{n}}{\:\sqrt{\mathrm{13}}}\mid\Rightarrow\mathrm{2}\sqrt{\mathrm{13}}\:=\mid\mathrm{3}{m}+{n}−\mathrm{2}\mid \\ $$$$\mathrm{3}{m}+{n}\:=\:\mathrm{2}\pm\mathrm{2}\sqrt{\mathrm{13}}\:...\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{1}=\mid\frac{{m}−\mathrm{3}+{n}}{\:\sqrt{\mathrm{10}}}\mid\:\Rightarrow\sqrt{\mathrm{10}}\:=\mid{m}+{n}−\mathrm{3}\mid \\ $$$${m}+{n}\:=\:\mathrm{3}\pm\sqrt{\mathrm{10}}\:...\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\rightarrow\mathrm{2}{m}\:=\:−\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{13}}\mp\sqrt{\mathrm{10}} \\ $$$$\:\:{m}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\mathrm{13}}\mp\frac{\sqrt{\mathrm{10}}}{\mathrm{2}} \\ $$$$\:\:{n}=\:\frac{\mathrm{7}}{\mathrm{2}}\pm\sqrt{\mathrm{10}}\mp\sqrt{\mathrm{13}}\pm\frac{\sqrt{\mathrm{10}}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com