Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 165641 by nadovic last updated on 05/Feb/22

            Given that  y = (1/x)   (a) Show that  y^((n))  = (((−1)^n  n!)/x^(n+1) )  (b) Find an expression for y^((n−1)) + y^((n))

$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Given}\:\mathrm{that}\:\:{y}\:=\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\left({a}\right)\:\mathrm{Show}\:\mathrm{that}\:\:{y}^{\left({n}\right)} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{{x}^{{n}+\mathrm{1}} } \\ $$$$\left({b}\right)\:\mathrm{Find}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for}\:{y}^{\left({n}−\mathrm{1}\right)} +\:{y}^{\left({n}\right)} \\ $$$$ \\ $$

Answered by aleks041103 last updated on 05/Feb/22

a)  y^((0)) =(((−1)^0 0!)/x^(0+1) )=(1/x)=y✓  suppose  y^((k)) =(((−1)^k k!)/x^(k+1) )  then  y^((k+1)) =y^((k)) ′=((((−1)^k k!)/x^(k+1) ))′=  =(−1)^k k!(x^(−k−1) )′=  =(−1)^k k!(−k−1)x^(−k−2) =  =(−1)^(k+1) k!(k+1) (1/x^(k+2) )=  =(((−1)^(k+1) (k+1)!)/x^((k+1)+1) )✓  ⇒by induction:  ∀n∈N^0 , y^((n)) =(d^n /dx^n )((1/x))=(((−1)^n n!)/x^(n+1) )

$$\left.{a}\right) \\ $$$${y}^{\left(\mathrm{0}\right)} =\frac{\left(−\mathrm{1}\right)^{\mathrm{0}} \mathrm{0}!}{{x}^{\mathrm{0}+\mathrm{1}} }=\frac{\mathrm{1}}{{x}}={y}\checkmark \\ $$$${suppose} \\ $$$${y}^{\left({k}\right)} =\frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{{x}^{{k}+\mathrm{1}} } \\ $$$${then} \\ $$$${y}^{\left({k}+\mathrm{1}\right)} ={y}^{\left({k}\right)} '=\left(\frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{{x}^{{k}+\mathrm{1}} }\right)'= \\ $$$$=\left(−\mathrm{1}\right)^{{k}} {k}!\left({x}^{−{k}−\mathrm{1}} \right)'= \\ $$$$=\left(−\mathrm{1}\right)^{{k}} {k}!\left(−{k}−\mathrm{1}\right){x}^{−{k}−\mathrm{2}} = \\ $$$$=\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} {k}!\left({k}+\mathrm{1}\right)\:\frac{\mathrm{1}}{{x}^{{k}+\mathrm{2}} }= \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} \left({k}+\mathrm{1}\right)!}{{x}^{\left({k}+\mathrm{1}\right)+\mathrm{1}} }\checkmark \\ $$$$\Rightarrow{by}\:{induction}: \\ $$$$\forall{n}\in\mathbb{N}^{\mathrm{0}} ,\:{y}^{\left({n}\right)} =\frac{{d}^{{n}} }{{dx}^{{n}} }\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{{x}^{{n}+\mathrm{1}} } \\ $$

Answered by aleks041103 last updated on 05/Feb/22

b)  y^((n−1)) =(((−1)^(n−1) (n−1)!)/x^n )  y^((n)) =(((−1)^n n!)/x^(n+1) )  ⇒y^((n−1)) +y^((n)) =(((−1)^n n!)/x^(n+1) )(1+(((−1)x)/n))  y^((n−1)) +y^((n)) =(((−1)^n (n−1)!)/x^(n+1) )(n−x)

$$\left.{b}\right) \\ $$$${y}^{\left({n}−\mathrm{1}\right)} =\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{{x}^{{n}} } \\ $$$${y}^{\left({n}\right)} =\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{{x}^{{n}+\mathrm{1}} } \\ $$$$\Rightarrow{y}^{\left({n}−\mathrm{1}\right)} +{y}^{\left({n}\right)} =\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{{x}^{{n}+\mathrm{1}} }\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right){x}}{{n}}\right) \\ $$$${y}^{\left({n}−\mathrm{1}\right)} +{y}^{\left({n}\right)} =\frac{\left(−\mathrm{1}\right)^{{n}} \left({n}−\mathrm{1}\right)!}{{x}^{{n}+\mathrm{1}} }\left({n}−{x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com